Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 628(Pt A): 519-529, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35933869

RESUMO

HYPOTHESIS: Layered double hydroxide (LDH) loaded with orthophosphate (PO4) are suggested as slow-release P fertilizers. However, PO4-LDHs have a low maximal P content, related to high charge HPO42-/PO43- anions occupying the anion exchange capacity (AEC) of LDHs. We postulate that the P content of LDHs can be enhanced by exchanging them with polymeric-P (i.e. trimetaphosphate, P3O9), which has a lower molar charge/P ratio than its monomer. EXPERIMENTS: Adsorption capacities were compared between PO4 and P3O9 for as-synthesized and calcined MgAl LDHs with Mg/Al ratio of 2, 3, or 4; the P-LDHs were characterized (XRD, FTIR). Dialysis and soil incubation experiments were performed with PO4-LDHs, P3O9-LDHs, and corresponding soluble fertilizers to compare their P release and P solubility (CaCl2 extract). FINDINGS: The P adsorption capacities were 1.25-1.60 fold larger for P3O9 compared to PO4, yet the high theoretical P contents with P3O9 were not achieved (incomplete loading, P3O9 depolymerization). P3O9-Mg3Al released polymeric-P whereas P3O9-Mg2Al released depolymerized PO4, and P release from P3O9-LDHs was slower than that of PO4-LDHs. With soil incubation, soluble P from P3O9-LDH was initially lower but later converged to that of PO4-LDH as result of continued hydrolysis, yet did not exceed that of the soluble P3O9 and PO4 fertilizers.


Assuntos
Fertilizantes , Fósforo , Cloreto de Cálcio , Estudos de Viabilidade , Fertilizantes/análise , Hidróxidos , Fosfatos , Diálise Renal , Solo
2.
Plant Cell ; 30(5): 1147-1164, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618628

RESUMO

Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABAA receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA]i) in both wheat (Triticum aestivum) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA]i because TaALMT1 facilitates GABA efflux but GABA does not complex Al3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14C-GABA uptake into TaALMT1-expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1F213C) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA]i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status.


Assuntos
Alumínio/metabolismo , Malatos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transporte Biológico/fisiologia , Transporte de Íons/fisiologia
3.
New Phytol ; 199(2): 367-378, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23600562

RESUMO

The fractionation of stable copper (Cu) isotopes during uptake into plant roots and translocation to shoots can provide information on Cu acquisition mechanisms. Isotope fractionation ((65) Cu/(63) Cu) and intact tissue speciation techniques (X-ray absorption spectroscopy, XAS) were used to examine the uptake, translocation and speciation of Cu in strategy I (tomato-Solanum lycopersicum) and strategy II (oat-Avena sativa) plant species. Plants were grown in controlled solution cultures, under varied iron (Fe) conditions, to test whether the stimulation of Fe-acquiring mechanisms can affect Cu uptake in plants. Isotopically light Cu was preferentially incorporated into tomatoes (Δ(65) Cu(whole plant-solution ) = c. -1‰), whereas oats showed minimal isotopic fractionation, with no effect of Fe supply in either species. The heavier isotope was preferentially translocated to shoots in tomato, whereas oat plants showed no significant fractionation during translocation. The majority of Cu in the roots and leaves of both species existed as sulfur-coordinated Cu(I) species resembling glutathione/cysteine-rich proteins. The presence of isotopically light Cu in tomatoes is attributed to a reductive uptake mechanism, and the isotopic shifts within various tissues are attributed to redox cycling during translocation. The lack of isotopic discrimination in oat plants suggests that Cu uptake and translocation are not redox selective.


Assuntos
Avena/metabolismo , Fracionamento Químico/métodos , Cobre/metabolismo , Solanum lycopersicum/metabolismo , Transporte Biológico/efeitos dos fármacos , Biomassa , Análise de Fourier , Ferro/farmacologia , Isótopos , Modelos Biológicos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Espectroscopia por Absorção de Raios X
4.
Plant Physiol ; 160(2): 1097-109, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22864584

RESUMO

It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true K(m) for uptake of Cd(2+) and Zn(2+) was estimated at <5 nm, three orders of magnitude smaller than the K(m) measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity.


Assuntos
Cádmio/metabolismo , Níquel/metabolismo , Raízes de Plantas/metabolismo , Zinco/metabolismo , Transporte Biológico Ativo , Soluções Tampão , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Difusão , Concentração de Íons de Hidrogênio , Transporte de Íons , Solanum lycopersicum/metabolismo , Magnésio/metabolismo , Modelos Biológicos , Modelos Estatísticos , Soluções/metabolismo , Spinacia oleracea/metabolismo
5.
Anal Chim Acta ; 578(2): 195-202, 2006 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-17723712

RESUMO

The evaluation of the ecotoxicological risk of nickel (Ni) in surface water is hampered by a lack of speciation data. Six surface waters were sampled and speciation of Ni(II) was measured by the Donnan membrane technique (DMT) combined with radiochemical determination of 63Ni. The free Ni2+ ion fraction in the dissolved (<0.45 microm) phase was determined at background Ni concentration ((4-8) x 10(-8) M) and at concentrations in the range of toxicity thresholds for the Ni sensitive species Cerodaphnia dubia (5 x 10(-8) to 2 x 10(-6) M). The free ion fraction ranged from 4 to 45% at background Ni and increased with increasing Ni concentration and water hardness and with decreasing pH. The equilibration time after addition of Ni2+ (3h-7d) did not significantly change the measured free ion fraction. Predictions of the Humic-Ion Binding Model WHAM (Windermere Humic Aqueous Model) VI overestimated the observed free Ni2+ fraction (median>two-fold), even when assuming that all dissolved organic matter (DOM) was present as fulvic acid (FA). The impact of several model parameters affecting the prediction of Ni speciation were evaluated, including the solubility product of Fe(OH)3, which affects the Fe competition for complexation by DOM. The best fit (R2=0.88) was obtained by increasing only the distribution term DeltaLK2, which modifies the binding strength of multi-dentate sites, to accommodate the observed dependence of free ion fraction on Ni concentration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA