Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Adv ; 159: 213797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368693

RESUMO

Theranostics nanoparticles (NPs) have recently received much attention in cancer imaging and treatment. This study aimed to develop a multifunctional nanosystem for the targeted delivery of photothermal and chemotherapy agents. Fe3O4 NPs were modified with polydopamine, bovine serum albumin, and loaded with DOX via a thermal-cleavable Azo linker (Fe3O4@PDA@BSA-DOX). The size of Fe3O4@PDA@BSA NPs was approximately 98 nm under the desired conditions. Because of the ability of Fe3O4 and PDA to convert light into heat, the temperature of Fe3O4@PDA@BSA NPs increased to approximately 47 °C within 10 min when exposed to an 808 nm NIR laser with a power density of 1.5 W/cm2. The heat generated by the NIR laser leads to the breaking of AZO linker and drug release. In vivo and in vitro results demonstrated that prepared NPs under laser irradiation successfully eradicated tumor cells without any significant toxicity effect. Moreover, the Fe3O4@PDA@BSA NPs exhibited the potential to function as a contrasting agent. These NPs could accumulate in tumors with the help of an external magnet, resulting in a significant enhancement in the quality of magnetic resonance imaging (MRI). The prepared novel multifunctional NPs seem to be an efficient system for imaging and combination therapy in melanoma.


Assuntos
Compostos Férricos , Indóis , Melanoma , Polímeros , Humanos , Melanoma/tratamento farmacológico , Terapia Fototérmica , Medicina de Precisão , Fototerapia/métodos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Lasers
2.
Int Immunopharmacol ; 129: 111543, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38301413

RESUMO

Melanoma is an especially fatal neoplasm resistant to traditional treatment. The advancement of novel therapeutical approaches has gained attention in recent years by shedding light on the molecular mechanisms of melanoma tumorigenesis and their powerful interplay with the immune system. The presence of many mutations in melanoma cells results in the production of a varied array of antigens. These antigens can be recognized by the immune system, thereby enabling it to distinguish between tumors and healthy cells. In the context of peptide cancer vaccines, generally, they are designed based on tumor antigens that stimulate immunity through antigen-presenting cells (APCs). As naked peptides often have low potential in eliciting a desirable immune reaction, immunization with such compounds usually necessitates adjuvants and nanocarriers. Actually, nanoparticles (NPs) can provide a robust immune response to peptide-based melanoma vaccines. They improve the directing of peptide vaccines to APCs and induce the secretion of cytokines to get maximum immune response. This review provides an overview of the current knowledge of the utilization of nanotechnology in peptide vaccines emphasizing melanoma, as well as highlights the significance of physicochemical properties in determining the fate of these nanovaccines in vivo, including their drainage to lymph nodes, cellular uptake, and influence on immune responses.


Assuntos
Melanoma , Humanos , Nanovacinas , Peptídeos/uso terapêutico , Células Apresentadoras de Antígenos , Imunoterapia/métodos
3.
Drug Deliv Transl Res ; 13(1): 189-221, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36074253

RESUMO

The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.


Assuntos
Neoplasias , Sêmen , Masculino , Humanos , Nanotecnologia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA