Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Pharmacol ; 13: 890693, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652047

RESUMO

Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both in vitro and in vivo models and gathered information on nanoparticle-mediated delivery of fisetin in vitro and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin in vitro, in the zebrafish model, and in ex vivo samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation in vitro and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.

2.
Sci Rep ; 11(1): 14922, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290274

RESUMO

The GNA15 gene is ectopically expressed in human pancreatic ductal adenocarcinoma cancer cells. The encoded Gα15 protein can promiscuously redirect GPCR signaling toward pathways with oncogenic potential. We sought to describe the distribution of GNA15 in adenocarcinoma from human pancreatic specimens and to analyze the mechanism driving abnormal expression and the consequences on signaling and clinical follow-up. We detected GNA15 expression in pre-neoplastic pancreatic lesions and throughout progression. The analysis of biological data sets, primary and xenografted human tumor samples, and clinical follow-up shows that elevated expression is associated with poor prognosis for GNA15, but not any other GNA gene. Demethylation of the 5' GNA15 promoter region was associated with ectopic expression of Gα15 in pancreatic neoplastic cells, but not in adjacent dysplastic or non-transformed tissue. Down-modulation of Gα15 by shRNA or CRISPR/Cas9 affected oncogenic signaling, and reduced adenocarcimoma cell motility and invasiveness. We conclude that de novo expression of wild-type GNA15 characterizes transformed pancreatic cells. The methylation pattern of GNA15 changes in preneoplastic lesions coincident with the release a transcriptional blockade that allows ectopic expression to persist throughout PDAC progression. Elevated GNA15 mRNA correlates with poor prognosis. In addition, ectopic Gα15 signaling provides an unprecedented mechanism in the early steps of pancreas carcinogenesis distinct from classical G protein oncogenic mutations described previously in GNAS and GNAQ/GNA11.


Assuntos
Carcinoma Ductal Pancreático/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pancreáticas/genética , Sistemas CRISPR-Cas , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação ao GTP/metabolismo , Expressão Gênica/genética , Humanos , Metilação , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , RNA Mensageiro , RNA Interferente Pequeno , Transdução de Sinais
3.
Sci Rep ; 10(1): 18764, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127953

RESUMO

Droplet digital PCR (ddPCR) is a sensitive and reproducible technology widely used for quantitation of several viruses. The aim of this study was to evaluate the 2019-nCoV CDC ddPCR Triplex Probe Assay (BioRad) performance, comparing the direct quantitation of SARS-CoV-2 on nasopharyngeal swab with the procedure applied to the extracted RNA. Moreover, two widely used swab types were compared (UTM 3 mL and ESwab 1 mL, COPAN). A total of 50 nasopharyngeal swabs (n = 25 UTM 3 mL and n = 25 ESwab 1 mL) from SARS-CoV-2 patients, collected during the pandemic at IRCCS Sacro Cuore Don Calabria Hospital (Veneto Region, North-East Italy), were used for our purpose. After heat inactivation, an aliquot of swab medium was used for the direct quantitation. Then, we compared the direct method with the quantitation performed on the RNA purified from nasopharyngeal swab by automated extraction. We observed that the direct approach achieved generally equal RNA copies compared to the extracted RNA. The results with the direct quantitation were more accurate on ESwab with a sensitivity of 93.33% [95% CI, 68.05 to 99.83] and specificity of 100.00% for both N1 and N2. On the other hand, on UTM we observed a higher rate of discordant results for N1 and N2. The human internal amplification control (RPP30) showed 100% of both sensitivity and specificity independent of swabs and approaches. In conclusion, we described a direct quantitation of SARS-CoV-2 in nasopharyngeal swab. Our approach resulted in an efficient quantitation, without automated RNA extraction and purification. However, special care needs to be taken on the potential bias due to the conservation of samples and to the heating treatment, as we used thawed and heat inactivated material. Further studies on a larger cohort of samples are warranted to evaluate the clinical value of this direct approach.


Assuntos
Técnicas de Laboratório Clínico/métodos , Reação em Cadeia da Polimerase Multiplex/métodos , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/diagnóstico , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/normas , Reprodutibilidade dos Testes , Mucosa Respiratória/virologia , SARS-CoV-2
4.
Clin Cancer Res ; 26(17): 4661-4669, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32532788

RESUMO

PURPOSE: Pancreatic cancer is one of the most lethal solid tumors, mainly because of its intrinsic chemoresistance. We identified TAK1 as a central hub sustaining this resistance. Nanoliposomal irinotecan (nal-IRI) is a novel treatment for metastatic gemcitabine-refractory pancreatic cancer. We endeavored to identify circulating markers for TAK1 activation predicting chemoresistance in this setting. EXPERIMENTAL DESIGN: In vivo activity of nal-IRI was validated in an orthotopic nude murine model expressing TAK1-specific shRNA. Plasma concentration of 20 different cytokines were measured by a multiplex xMAP/Luminex technology in patients prospectively enrolled to receive nal-IRI plus 5-fluorouracil/leucovorin (5-FU/LV). The optimal cutoff thresholds able to significantly predict patients' outcome were obtained on the basis of the maximization of the Youden's statistics. RESULTS: Differential expression profiling revealed the gene coding for IL8 as the most significantly downregulated in shTAK1 pancreatic cancer cell lines. Mice bearing shTAK1 tumors had significantly lower plasma levels of IL8 and experienced a significant reduction in tumor growth if treated with nal-IRI, whereas those bearing TAK1-proficient tumors were resistant to this agent. In a discovery cohort of 77 patients, IL8 was the circulating factor most significantly correlated with survival (plasma levels lower vs higher than cutoff: mPFS 3.4 months vs 2.8 months; hazard ratio [HR], 2.55; 95% CI, 1.39-4.67; P = 0.0017; median overall survival 8.9 months vs 5.3 months; HR, 3.51; 95% CI, 0.84-6.68; P = 4.9e-05). These results were confirmed in a validation cohort of 50 patients. CONCLUSIONS: Our study identified IL8 as the most significant circulating factor for TAK1 pathway activation and candidates IL8 as a potential predictive biomarker of resistance to nal-IRI in gemcitabine-refractory patients with pancreatic cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Interleucina-8/sangue , MAP Quinase Quinase Quinases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Irinotecano/farmacologia , Irinotecano/uso terapêutico , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/genética , Estudos Prospectivos , Critérios de Avaliação de Resposta em Tumores Sólidos , Ativação Transcricional , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
5.
Cells ; 9(3)2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204402

RESUMO

Ectopic expression of RUNX2 has been reported in several tumors. In melanoma cells, the RUNT domain of RUNX2 increases cell proliferation and migration. Due to the strong link between RUNX2 and skeletal development, we hypothesized that the RUNT domain may be involved in the modulation of mechanisms associated with melanoma bone metastasis. Therefore, we evaluated the expression of metastatic targets in wild type (WT) and RUNT KO melanoma cells by array and real-time PCR analyses. Western blot, ELISA, immunofluorescence, migration and invasion ability assays were also performed. Our findings showed that the expression levels of bone sialoprotein (BSP) and osteopontin (SPP1) genes, which are involved in malignancy-induced hypercalcemia, were reduced in RUNT KO cells. In addition, released PTHrP levels were lower in RUNT KO cells than in WT cells. The RUNT domain also contributes to increased osteotropism and bone invasion in melanoma cells. Importantly, we found that the ERK/p-ERK and AKT/p-AKT pathways are involved in RUNT-promoted bone metastases. On the basis of our findings, we concluded that the RUNX2 RUNT domain is involved in the mechanisms promoting bone metastasis of melanoma cells via complex interactions between multiple players involved in bone remodeling.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Subunidade alfa 1 de Fator de Ligação ao Core/química , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
7.
Cells ; 8(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683926

RESUMO

Osteoarthritis (OA) is predominantly characterized by the progressive degradation of articular cartilage, the connective tissue produced by chondrocytes, due to an imbalance between anabolic and catabolic processes. In addition, physical activity (PA) is recognized as an important tool for counteracting OA. To evaluate PA effects on the chondrocyte lineage, we analyzed the expression of SOX9, COL2A1, and COMP in circulating progenitor cells following a half marathon (HM) performance. Therefore, we studied in-depth the involvement of metabolites affecting chondrocyte lineage, and we compared the metabolomic profile associated with PA by analyzing runners' sera before and after HM performance. Interestingly, this study highlighted that metabolites involved in vitamin B6 salvage, such as pyridoxal 5'-phosphate and pyridoxamine 5'-phosphate, were highly modulated. To evaluate the effects of vitamin B6 in cartilage cells, we treated differentiated mesenchymal stem cells and the SW1353 chondrosarcoma cell line with vitamin B6 in the presence of IL1ß, the inflammatory cytokine involved in OA. Our study describes, for the first time, the modulation of the vitamin B6 salvage pathway following PA and suggests a protective role of PA in OA through modulation of this pathway.


Assuntos
Cartilagem/metabolismo , Condrócitos/metabolismo , Exercício Físico/fisiologia , Adulto , Atletas , Cartilagem/fisiologia , Proteína de Matriz Oligomérica de Cartilagem/análise , Proteína de Matriz Oligomérica de Cartilagem/sangue , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Linhagem Celular , Células Cultivadas , Condrócitos/fisiologia , Colágeno Tipo II/análise , Colágeno Tipo II/sangue , Proteínas de Drosophila/análise , Proteínas de Drosophila/sangue , Feminino , Humanos , Interleucina-1beta , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Metabolômica/métodos , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Osteoartrite/fisiopatologia , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/fisiopatologia , Fatores de Transcrição SOX9/análise , Fatores de Transcrição SOX9/sangue , Vitamina B 6/metabolismo
8.
Cells ; 8(7)2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330975

RESUMO

Physical exercise is known to promote beneficial effects on overall health, counteracting risks related to degenerative diseases. MicroRNAs (miRNAs), short non-coding RNAs affecting the expression of a cell's transcriptome, can be modulated by different stimuli. Yet, the molecular effects on osteogenic differentiation triggered by miRNAs upon physical exercise are not completely understood. In this study, we recruited 20 male amateur runners participating in a half marathon. Runners' sera, collected before (PRE RUN) and after (POST RUN) the run, were added to cultured human mesenchymal stromal cells. We then investigated their effects on the modulation of selected miRNAs and the consequential effects on osteogenic differentiation. Our results showed an increased expression of miRNAs promoting osteogenic differentiation (miR-21-5p, miR-129-5p, and miR-378-5p) and a reduced expression of miRNAs involved in the adipogenic differentiation of progenitor cells (miR-188-5p). In addition, we observed the downregulation of PTEN and SMAD7 expression along with increased AKT/pAKT and SMAD4 protein levels in MSCs treated with POST RUN sera. The consequent upregulation of RUNX2 expression was also proven, highlighting the molecular mechanisms by which miR-21-5p promotes osteogenic differentiation. In conclusion, our work proposes novel data, which demonstrate how miRNAs may regulate the osteogenic commitment of progenitor cells in response to physical exercise.


Assuntos
Exercício Físico , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteogênese/fisiologia , Adipogenia/fisiologia , Adulto , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade
9.
Sci Rep ; 9(1): 8052, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142788

RESUMO

Runx2 is a transcription factor involved in melanoma cell migration and proliferation. Here, we extended the analysis of Runt domain of Runx2 in melanoma cells to deepen understanding of the underlying mechanisms. By the CRISPR/Cas9 system we generated the Runt KO melanoma cells 3G8. Interestingly, the proteome analysis showed a specific protein signature of 3G8 cells related to apoptosis and migration, and pointed out the involvement of Runt domain in the neoangiogenesis process. Among the proteins implicated in angiogenesis we identified fatty acid synthase, chloride intracellular channel protein-4, heat shock protein beta-1, Rho guanine nucleotide exchange factor 1, D-3-phosphoglycerate dehydrogenase, myosin-1c and caveolin-1. Upon querying the TCGA provisional database for melanoma, the genes related to these proteins were found altered in 51.36% of total patients. In addition, VEGF gene expression was reduced in 3G8 as compared to A375 cells; and HUVEC co-cultured with 3G8 cells expressed lower levels of CD105 and CD31 neoangiogenetic markers. Furthermore, the tube formation assay revealed down-regulation of capillary-like structures in HUVEC co-cultured with 3G8 in comparison to those with A375 cells. These findings provide new insight into Runx2 molecular details which can be crucial to possibly propose it as an oncotarget of melanoma.


Assuntos
Biomarcadores Tumorais/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Melanoma/genética , Neovascularização Patológica/genética , Neoplasias Cutâneas/genética , Apoptose/genética , Biomarcadores Tumorais/análise , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Técnicas de Cocultura , Biologia Computacional , Conjuntos de Dados como Assunto , Endoglina/análise , Endoglina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Melanócitos , Melanoma/irrigação sanguínea , Melanoma/patologia , Neovascularização Patológica/patologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Cultura Primária de Células , Domínios Proteicos/genética , Proteômica , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/genética
10.
Cells ; 7(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463392

RESUMO

The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy.

11.
Oncotarget ; 9(14): 11489-11502, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29545914

RESUMO

Melanoma is an aggressive skin cancer; an early detection of the primary tumor may improve its prognosis. Despite many genes have been shown to be involved in melanoma, the full framework of melanoma transformation has not been completely explored. The characterization of pathways involved in tumor restraint in in vitro models may help to identify oncotarget genes. We therefore aimed to probe novel oncotargets through an integrated approach involving proteomic, gene expression and bioinformatic analysis We investigated molecular modulations in melanoma cells treated with ascorbic acid, which is known to inhibit cancer growth at high concentrations. For this purpose a proteomic approach was applied. A deeper insight into ascorbic acid anticancer activity was achieved; the discovery of deregulated processes suggested further biomarkers. In addition, we evaluated the expression of identified genes as well as the migration ability in several melanoma cell lines. Data obtained by a multidisciplinary approach demonstrated the involvement of Enolase 1 (ENO1), Parkinsonism-associated deglycase (PARK7), Prostaglansin E synthase 3 (PTGES3), Nucleophosmin (NPM1), Stathmin 1 (STMN1) genes in cell transformation and identified Single stranded DNA binding protein 1 (SSBP1) as a possible onco-suppressor in melanoma cancer.

12.
Endocr Relat Cancer ; 25(3): 269-277, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29295822

RESUMO

Acromegalic patients, characterized by excessive secretion of GH and IGF-1, show a high fracture risk but bone mineral density is a poor predictor for bone fractures in these patients. The effects of an excess of GH/IGF1 on skeleton as well as on osteogenic progenitors, i.e. mesenchymal stem cells, have not been investigated in these patients. We aimed to elucidate the skeletal conditions of acromegalic patients by means of bone microarchitecture analysis and evaluation of MSCs osteogenic commitment. In particular, we performed histomorphometric analyses, and we quantified the expression levels of the osteogenic transcription factor RUNX2 in circulating MSCs. Our results showed an abnormal microarchitecture and demonstrated that bone impairment in acromegalic patients is associated with the upregulation of RUNX2 expression. Furthermore, osteoblastic activity was significantly reduced in patients under pharmacological treatment, compared to untreated patients. In conclusion, this study demonstrates the key role of RUNX2 gene overexpression in causing bone impairment in acromegalic patients. It also suggests a therapeutic approach for the improvement of bone quality, focused on the osteoblastic lineage rather than the inhibition of osteoclastic activity.


Assuntos
Acromegalia/genética , Osso e Ossos/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Acromegalia/metabolismo , Adulto , Idoso , Densidade Óssea , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima , Adulto Jovem
13.
J Proteomics ; 170: 80-87, 2018 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28887210

RESUMO

Physical activity improves overall health and counteracts metabolic pathologies. Adipose tissue and bone are important key targets of exercise; the prevalence of diseases associated with suboptimal physical activity levels has increased in recent times as a result of lifestyle changes. Mesenchymal stem cells (MSCs) differentiation in either osteogenic or adipogenic lineage is regulated by many factors. Particularly, the expression of master genes such as RUNX2 and PPARγ2 is essential for MSC commitment to osteogenic or adipogenic differentiation, respectively. Besides various positive effects on health, some authors have reported stressful outcomes as a consequence of endurance in physical activity. We looked for further clues about MSCs differentiation and serum proteins modulation studying the effects of half marathon in runners by means of gene expression analyses and a proteomic approach. Our results demonstrated an increase in osteogenic commitment and a reduction in adipogenic commitment of MSCs. In addition, for the first time we have analyzed the proteomic profile changes in runners after half-marathon activity in order to survey the related systemic adjustments. The shotgun proteomic approach, performed through the immuno-depletion of the 14 most abundant serum proteins, allowed the identification of 23 modulated proteins after the half marathon. Interestingly, proteomic data showed the activation of both inflammatory response and detoxification process. Moreover, the involvement of pathways associated to immune response, lipid transport and coagulation, was elicited. Notably, positive and negative effects may be strictly linked. Data are available via ProteomeXchange with identifier PXD006704. SIGNIFICANCE: We describe gene expression and proteomic studies aiming to an in-depth understanding of half-marathon effects on bone and adipogenic differentiation as well as biological phenomena involved in sport activity. We believe that this novel approach suggests the physical effects on overall health and show the different pathways involved during half marathon. Contents of the paper have not been published or submitted for publication elsewhere. The authors declare no conflict of interest.


Assuntos
Adipogenia/fisiologia , Proteínas Sanguíneas/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Corrida/fisiologia , Adulto , Metabolismo Energético/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Yin-Yang
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA