Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(5): 606-613, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37197477

RESUMO

The mitogen-activated protein kinase signaling cascade is conserved across eukaryotes, where it plays a critical role in the regulation of activities including proliferation, differentiation, and stress responses. This pathway propagates external stimuli through a series of phosphorylation events, which allows external signals to influence metabolic and transcriptional activities. Within the cascade, MEK, or MAP2K, enzymes occupy a molecular crossroads immediately upstream to significant signal divergence and cross-talk. One such kinase, MAP2K7, also known as MEK7 and MKK7, is a protein of great interest in the molecular pathophysiology underlying pediatric T cell acute lymphoblastic leukemia (T-ALL). Herein, we describe the rational design, synthesis, evaluation, and optimization of a novel class of irreversible MAP2K7 inhibitors. With a streamlined one-pot synthesis, favorable in vitro potency and selectivity, and promising cellular activity, this novel class of compounds wields promise as a powerful tool in the study of pediatric T-ALL.

2.
J Chem Inf Model ; 59(10): 4460-4466, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31566378

RESUMO

MEK4, mitogen-activated protein kinase kinase 4, is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. With advances in both computer and biological high-throughput screening, selective chemical entities can be discovered. Structure-based quantitative structure-activity relationship (QSAR) modeling often fails to generate accurate models due to poor alignment of training sets containing highly diverse compounds. Here we describe a highly predictive, nonalignment based robust QSAR model based on a data set of strikingly diverse MEK4 inhibitors. We computed the electrostatic potential (ESP) charges using a density functional theory (DFT) formalism of the donor and acceptor atoms of the ligands and hinge residues. Novel descriptors were then generated from the perturbation of the charge densities of the donor and acceptor atoms and were used to model a diverse set of 84 compounds, from which we built a robust predictive model.


Assuntos
MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Relação Quantitativa Estrutura-Atividade , Bibliotecas de Moléculas Pequenas
3.
ChemMedChem ; 14(6): 615-620, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30707493

RESUMO

Herein we report the discovery of a novel series of highly potent and selective mitogen-activated protein kinase kinase 4 (MEK4) inhibitors. MEK4 is an upstream kinase in MAPK signaling pathways that phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Optimization of this series via structure-activity relationships and molecular modeling led to the identification of compound 6 ff (4-(6-fluoro-2H-indazol-3-yl)benzoic acid), a highly potent and selective MEK4 inhibitor. This series of inhibitors is the first of its kind in both activity and selectivity and will be useful in further defining the role of MEK4 in prostate and other cancers.


Assuntos
Indazóis/síntese química , Indazóis/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Especificidade por Substrato
4.
ACS Chem Biol ; 12(5): 1245-1256, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28263556

RESUMO

MEK4 is an upstream kinase in MAPK signaling pathways where it phosphorylates p38 MAPK and JNK in response to mitogenic and cellular stress queues. MEK4 is overexpressed and induces metastasis in advanced prostate cancer lesions. However, the value of MEK4 as an oncology target has not been pharmacologically validated because selective chemical probes targeting MEK4 have not been developed. Despite a high level of sequence homology in the ATP-binding site, most reported MEK inhibitors are selective for MEK1/2 and display reduced potency toward other MEKs. Here, we present the first functional and binding selectivity-profiling platform of the MEK family. We applied the platform to profile a set of known kinase inhibitors and used the results to develop an in silico approach for small molecule docking against MEK proteins. The docking studies identified molecular features of the ligands and corresponding amino acids in MEK proteins responsible for high affinity binding versus those driving selectivity. WaterLOGSY and saturation transfer difference (STD) NMR spectroscopy techniques were utilized to understand the binding modes of active compounds. Further minor synthetic manipulations provide a proof of concept by showing how information gained through this platform can be utilized to perturb selectivity across the MEK family. This inhibitor-based approach pinpoints key features governing MEK family selectivity and clarifies empirical selectivity profiles for a set of kinase inhibitors. Going forward, the platform provides a rationale for facilitating the development of MEK-selective inhibitors, particularly MEK4 selective inhibitors, and repurposing of kinase inhibitors for probing the structural selectivity of isoforms.


Assuntos
MAP Quinase Quinase Quinases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sítios de Ligação , Simulação por Computador , Ligantes , MAP Quinase Quinase 4/antagonistas & inibidores , Simulação de Acoplamento Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA