Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636895

RESUMO

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Assuntos
Neoplasias Encefálicas , Movimento Celular , Proliferação de Células , Galectina 3 , Glioblastoma , Microglia , Microambiente Tumoral , Animais , Humanos , Camundongos , Proteínas Sanguíneas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Galectina 3/metabolismo , Galectina 3/genética , Galectinas/metabolismo , Galectinas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Microglia/metabolismo , Microglia/patologia , Invasividade Neoplásica , Transdução de Sinais , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/imunologia
2.
Acta Neuropathol ; 146(1): 51-75, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202527

RESUMO

Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.


Assuntos
Galectina 3 , Doença de Parkinson , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Galectina 3/metabolismo , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo
3.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810433

RESUMO

Alzheimer's disease affects millions of lives worldwide. This terminal disease is characterized by the formation of amyloid aggregates, so-called amyloid oligomers. These oligomers are composed of ß-sheet structures, which are believed to be neurotoxic. However, the actual secondary structure that contributes most to neurotoxicity remains unknown. This lack of knowledge is due to the challenging nature of characterizing the secondary structure of amyloids in cells. To overcome this and investigate the molecular changes in proteins directly in cells, we used synchrotron-based infrared microspectroscopy, a label-free and non-destructive technique available for in situ molecular imaging, to detect structural changes in proteins and lipids. Specifically, we evaluated the formation of ß-sheet structures in different monogenic and bigenic cellular models of Alzheimer's disease that we generated for this study. We report on the possibility to discern different amyloid signatures directly in cells using infrared microspectroscopy and demonstrate that bigenic (amyloid-ß, α-synuclein) and (amyloid-ß, Tau) neuron-like cells display changes in ß-sheet load. Altogether, our findings support the notion that different molecular mechanisms of amyloid aggregation, as opposed to a common mechanism, are triggered by the specific cellular environment and, therefore, that various mechanisms lead to the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/química , Espectrofotometria Infravermelho/métodos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microscopia de Fluorescência , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , alfa-Sinucleína/química
4.
Stem Cells Transl Med ; 10(4): 582-597, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33295698

RESUMO

Microglia, the immune sentinel of the central nervous system (CNS), are generated from yolk sac erythromyeloid progenitors that populate the developing CNS. Interestingly, a specific type of bone marrow-derived monocyte is able to express a yolk sac microglial signature and populate CNS in disease. Here we have examined human bone marrow (hBM) in an attempt to identify novel cell sources for generating microglia-like cells to use in cell-based therapies and in vitro modeling. We demonstrate that hBM stroma harbors a progenitor cell that we name stromal microglial progenitor (STR-MP). STR-MP single-cell gene analysis revealed the expression of the consensus genetic microglial signature and microglial-specific genes present in development and CNS pathologies. STR-MPs can be expanded and generate microglia-like cells in vitro, which we name stromal microglia (STR-M). STR-M cells show phagocytic ability, classically activate, and survive and phagocyte in human brain tissue. Thus, our results reveal that hBM harbors a source of microglia-like precursors that can be used in patient-centered fast derivative approaches.


Assuntos
Medula Óssea , Microglia , Células-Tronco , Antígeno CD11b , Sistema Nervoso Central , Humanos , Antígenos Comuns de Leucócito , Microglia/citologia , Células-Tronco/citologia
5.
Brain Behav Immun ; 91: 369-382, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223048

RESUMO

BACKGROUND: Abnormal folding, aggregation and spreading of alpha-synuclein (αsyn) is a mechanistic hypothesis for the progressive neuropathology in Parkinson's disease (PD). Spread of αsyn between cells is supported by clinical, neuropathological and experimental evidence. It has been proposed that a pro-inflammatory micro-environment in response to αsyn can promote its aggregation. We have previously shown that allelic differences in the major histocompatibility complex class two transactivator (Mhc2ta) gene, located in the VRA4 locus, alter MHCII expression levels, microglial activation and antigen presentation capacity in rats upon human αsyn over-expression. In addition, Mhc2ta regulated dopaminergic neurodegeneration and the extent of motor impairment. The purpose of this study was to determine whether Mhc2ta regulates αsyn aggregation, propagation and dopaminergic pathology in an αsyn pre-formed fibril (PFF)-seeded in vivo model of PD. METHODS: The DA and DA.VRA4 congenic rat strains share background genome but display differential microglial antigen presenting capacity due to different Mhc2ta alleles in the VRA4 locus. PFFs of human αsyn or BSA solution were injected unilaterally to the striatum of DA and DA.VRA4 rats two weeks after ipsilateral administration of recombinant adeno-associated virus (rAAV) vectors carrying human αsyn or GFP to the substantia nigra pars compacta. Behavioural assessment was performed at 2, 5 and 8 weeks while histological evaluation of αsyn pathology, inflammation and neurodegeneration as well as determination of serum cytokine profiles were performed at 8 weeks. RESULTS: rAAV-mediated expression of human αsyn in nigral dopaminergic neurons combined with striatal PFF administration induced enhanced αsyn pathology in DA.VRA4 compared to DA rats. Mhc2ta thus significantly regulated the seeding, propagation and toxicity of αsyn in vivo. This was reflected in terms of wider extent and anatomical distribution of αsyn inclusions, ranging from striatum to the forebrain, midbrain, hindbrain and cerebellum in DA.VRA4. Compared to DA rats, DA.VRA4 also displayed enhanced motor impairment and dopaminergic neurodegeneration as well as higher levels of the proinflammatory cytokines IL-2 and TNFα in serum. CONCLUSIONS: We conclude that the key regulator of MHCII expression, Mhc2ta, modulates neuroinflammation, αsyn-seeded Lewy-like pathology, dopaminergic neurodegeneration and motor impairment. This makes Mhc2ta and microglial antigen presentation promising therapeutic targets for reducing the progressive neuropathology and clinical manifestations in PD.


Assuntos
Proteínas Nucleares , Doença de Parkinson , Transativadores , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Ratos , Substância Negra/metabolismo , Transativadores/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Alzheimers Res Ther ; 11(1): 87, 2019 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-31630687

RESUMO

BACKGROUND: Physical activity might reduce the risk of developing dementia. However, it is still unclear whether the protective effect differs depending on the subtype of dementia. We aimed to investigate if midlife physical activity affects the development of vascular dementia (VaD) and Alzheimer's disease (AD) differently in two large study populations with different designs. METHODS: Using a prospective observational design, we studied whether long-distance skiers of the Swedish Vasaloppet (n = 197,685) exhibited reduced incidence of VaD or AD compared to matched individuals from the general population (n = 197,684) during 21 years of follow-up (median 10, interquartile range (IQR) 5-15 years). Next, we studied the association between self-reported physical activity, stated twice 5 years apart, and incident VaD and AD in 20,639 participants in the Swedish population-based Malmo Diet and Cancer Study during 18 years of follow-up (median 15, IQR 14-17 years). Finally, we used a mouse model of AD and studied brain levels of amyloid-ß, synaptic proteins, and cognitive function following 6 months of voluntary wheel running. RESULTS: Vasaloppet skiers (median age 36.0 years [IQR 29.0-46.0], 38% women) had lower incidence of all-cause dementia (adjusted hazard ratio (HR) 0.63, 95% CI 0.52-0.75) and VaD (adjusted HR 0.49, 95% CI 0.33-0.73), but not AD, compared to non-skiers. Further, faster skiers exhibited a reduced incidence of VaD (adjusted HR 0.38, 95% CI 0.16-0.95), but not AD or all-cause dementia compared to slower skiers. In the Malmo Diet and Cancer Study (median age 57.5 years [IQR 51.0-63.8], 60% women), higher physical activity was associated with reduced incidence of VaD (adjusted HR 0.65, 95% CI 0.49-0.87), but not AD nor all-cause dementia. These findings were also independent of APOE-ε4 genotype. In AD mice, voluntary running did not improve memory, amyloid-ß, or synaptic proteins. CONCLUSIONS: Our results indicate that physical activity in midlife is associated with lower incidence of VaD. Using three different study designs, we found no significant association between physical activity and subsequent development of AD.


Assuntos
Doença de Alzheimer/epidemiologia , Demência Vascular/epidemiologia , Exercício Físico/fisiologia , Estilo de Vida , Adulto , Idoso , Bases de Dados Factuais , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
7.
Front Cell Neurosci ; 12: 323, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319362

RESUMO

Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer's and Parkinson's disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).

8.
J Neuroinflammation ; 15(1): 168, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29807527

RESUMO

BACKGROUND: Activated microglia play an essential role in inflammatory responses elicited in the central nervous system (CNS). Microglia-derived extracellular vesicles (EVs) are suggested to be involved in propagation of inflammatory signals and in the modulation of cell-to-cell communication. However, there is a lack of knowledge on the regulation of EVs and how this in turn facilitates the communication between cells in the brain. Here, we characterized microglial EVs under inflammatory conditions and investigated the effects of inflammation on the EV size, quantity, and protein content. METHODS: We have utilized western blot, nanoparticle tracking analysis (NTA), and mass spectrometry to characterize EVs and examine the alterations of secreted EVs from a microglial cell line (BV2) following lipopolysaccharide (LPS) and tumor necrosis factor (TNF) inhibitor (etanercept) treatments, or either alone. The inflammatory responses were measured with multiplex cytokine ELISA and western blot. We also subjected TNF knockout mice to experimental stroke (permanent middle cerebral artery occlusion) and validated the effect of TNF inhibition on EV release. RESULTS: Our analysis of EVs originating from activated BV2 microglia revealed a significant increase in the intravesicular levels of TNF and interleukin (IL)-6. We also observed that the number of EVs released was reduced both in vitro and in vivo when inflammation was inhibited via the TNF pathway. Finally, via mass spectrometry, we identified 49 unique proteins in EVs released from LPS-activated microglia compared to control EVs (58 proteins in EVs released from LPS-activated microglia and 37 from control EVs). According to Gene Ontology (GO) analysis, we found a large increase of proteins related to translation and transcription in EVs from LPS. Importantly, we showed a distinct profile of proteins found in EVs released from LPS treated cells compared to control. CONCLUSIONS: We demonstrate altered EV production in BV2 microglial cells and altered cytokine levels and protein composition carried by EVs in response to LPS challenge. Our findings provide new insights into the potential roles of EVs that could be related to the pathogenesis in neuroinflammatory diseases.


Assuntos
Citocinas/metabolismo , Vesículas Extracelulares/patologia , Infarto da Artéria Cerebral Média/complicações , Inflamação/etiologia , Microglia/patologia , Animais , Linhagem Celular Transformada , Modelos Animais de Doenças , Etanercepte/farmacologia , Vesículas Extracelulares/ultraestrutura , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Imunossupressores/farmacologia , Infarto da Artéria Cerebral Média/patologia , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
9.
Int J Exp Pathol ; 99(1): 38-45, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577471

RESUMO

Reduced blood flow to the brain induces cerebral ischaemia, potentially causing central injury and peripheral complications including gastrointestinal (GI) dysfunction. The pathophysiology behind GI symptoms is suspected to be neuropathy in the enteric nervous system (ENS), which is essential in regulating GI function. This study investigates if enteric neuropathy occurs after cerebral ischaemia, by analysing neuronal survival and relative numbers of vasoactive intestinal peptide (VIP) and neuronal nitric oxide synthase (nNOS) expressing neurons in mouse ileum after three types of cerebral ischaemia. Focal cerebral ischaemia, modelled by permanent middle cerebral artery occlusion (pMCAO) and global cerebral ischaemia, modelled with either transient occlusion of both common carotid arteries followed by reperfusion (GCIR) or chronic cerebral hypoperfusion (CCH) was performed on C56BL/6 mice. Sham-operated mice for each ischaemia model served as control. Ileum was collected after 1-17 weeks, depending on model, and analysed using morphometry and immunocytochemistry. For each group, intestinal mucosa and muscle layer thicknesses, neuronal numbers and relative proportions of neurons immunoreactive (IR) for nNOS or VIP were estimated. No alterations in mucosa or muscle layer thicknesses were noted in any of the groups. Loss of myenteric neurons and an increased number of VIP-IR submucous neurons were found in mouse ileum 7 days after pMCAO. None of the global ischaemia models showed any alterations in neuronal survival or relative numbers of VIP- and nNOS-IR neurons. We conclude that focal cerebral ischaemia and global cerebral ischaemia influence enteric neuronal survival differently. This is suggested to reflect differences in peripheral neuro-immune responses.


Assuntos
Isquemia Encefálica/metabolismo , Íleo/inervação , Plexo Mientérico/metabolismo , Neurônios/patologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Estenose das Carótidas/fisiopatologia , Morte Celular , Circulação Cerebrovascular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Plexo Mientérico/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Fatores de Tempo , Regulação para Cima
10.
Neuroreport ; 28(3): 134-140, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28079628

RESUMO

Inflammatory cytokines are potential modulators of infarct progression in acute ischaemic stroke, and are therefore possible targets for future treatment strategies. Cytokine studies in animal models of surgically induced stroke may, however, be influenced by the fact that the surgical intervention itself contributes towards the cytokine response. Community-dwelling domestic dogs suffer from spontaneous ischaemic stroke, and therefore, offer the opportunity to study the cytokine response in a noninvasive set-up. The aims of this study were to investigate cytokine concentrations in plasma and cerebrospinal fluid (CSF) in dogs with acute ischaemic stroke and to search for correlations between infarct volume and cytokine concentrations. Blood and CSF were collected from dogs less than 72 h after a spontaneous ischaemic stroke. Infarct volumes were estimated on MRIs. Interleukin (IL)-2, IL-6, IL-8, IL-10 and tumour necrosis factor in the plasma, CSF and brain homogenates were measured using a canine-specific multiplex immunoassay. IL-6 was significantly increased in plasma (P=0.04) and CSF (P=0.04) in stroke dogs compared with healthy controls. The concentrations of other cytokines, such as tumour necrosis factor and IL-2, were unchanged. Plasma IL-8 levels correlated significantly with infarct volume (Spearman's r=0.8, P=0.013). The findings showed increased concentrations of IL-6 in the plasma and CSF of dogs with acute ischaemic stroke comparable to humans. We believe that dogs with spontaneous stroke offer a unique, noninvasive means of studying the inflammatory processes that accompany stroke while reducing confounds that are unavoidable in experimental models.


Assuntos
Interleucina-6/sangue , Interleucina-6/líquido cefalorraquidiano , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/líquido cefalorraquidiano , Animais , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/etiologia , Isquemia Encefálica/complicações , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Modelos Animais de Doenças , Cães , Feminino , Imageamento por Ressonância Magnética , Masculino , Estatística como Assunto , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/etiologia
11.
PLoS One ; 11(9): e0161723, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27612287

RESUMO

BACKGROUND: Disease progression in retinal neurodegeneration is strongly correlated to immune cell activation, which may have either a neuroprotective or neurotoxic effect. Increased knowledge about the immune response profile and retinal neurodegeneration may lead to candidate targets for treatments. Therefore, we have used the explanted retina as a model to explore the immune response and expression of the immune modulator galectin-3 (Gal-3), induced by the cultivation per se and after additional immune stimulation with lipopolysaccharide (LPS), and how this correlates with retinal neurotoxicity. METHODS: Post-natal mouse retinas were cultured in a defined medium. One group was stimulated with LPS (100 ng/ml, 24 h). Retinal architecture, apoptotic cell death, and micro- and macroglial activity were studied at the time of cultivation (0 days in vitro (DIV)) and at 3, 4 and 7 DIV using morphological staining, biochemical- and immunohistochemical techniques. RESULTS: Our results show that sustained activation of macro- and microglia, characterized by no detectable cytokine release and limited expression of Gal-3, is not further inducing apoptosis additional to the axotomy-induced apoptosis in innermost nuclear layer. An elevated immune response was detected after LPS stimulation, as demonstrated primarily by release of immune mediators (i.e. interleukin 2 (IL-2), IL-6, KC/GRO (also known as CLCX1) and tumour necrosis factor-α (TNF-α)), increased numbers of microglia displaying morphologies of late activation stages as well as Gal-3 expression. This was accompanied with increased apoptosis in the two additional nuclear layers, and damage to retinal gross architecture. CONCLUSION: We demonstrate that an immune response characterized by sustained and increased release of cytokines, along with an increase in Gal-3 expression, is accompanied by significant increased neurotoxicity in the explanted retina. Further investigations using the current setting may lead to increased understanding on the mechanisms involved in neuronal loss in retinal neurodegenerations.


Assuntos
Galectina 3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Retina/citologia , Retina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Ectodisplasinas/metabolismo , Galectina 3/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Técnicas In Vitro , Inflamação/induzido quimicamente , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
12.
Sci Rep ; 6: 29291, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384243

RESUMO

Microglia are activated following cerebral ischemia and increase their production of the neuro- and immunomodulatory cytokine tumor necrosis factor (TNF). To address the function of TNF from this cellular source in focal cerebral ischemia we used TNF conditional knock out mice (LysMcreTNF(fl/fl)) in which the TNF gene was deleted in cells of the myeloid lineage, including microglia. The deletion reduced secreted TNF levels in lipopolysaccharide-stimulated cultured primary microglia by ~93%. Furthermore, phosphorylated-ERK/ERK ratios were significantly decreased in naïve LysMcreTNF(fl/fl) mice demonstrating altered ERK signal transduction. Micro-PET using (18)[F]-fluorodeoxyglucose immediately after focal cerebral ischemia showed increased glucose uptake in LysMcreTNF(fl/fl) mice, representing significant metabolic changes, that translated into increased infarct volumes at 24 hours and 5 days compared to littermates (TNFfl/fl). In naïve LysMcreTNF(fl/fl) mice cytokine levels were low and comparable to littermates. At 6 hours, TNF producing microglia were reduced by 56% in the ischemic cortex in LysMcreTNF(fl/fl) mice compared to littermate mice, whereas no TNF(+) leukocytes were detected. At 24 hours, pro-inflammatory cytokine (TNF, IL-1ß, IL-6, IL-5 and CXCL1) levels were significantly lower in LysMcreTNF(fl/fl) mice, despite comparable infiltrating leukocyte populations. Our results identify microglial TNF as beneficial and neuroprotective in the acute phase and as a modulator of neuroinflammation at later time points after experimental ischemia, which may contribute to regenerative recovery.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Células Mieloides/metabolismo , Acidente Vascular Cerebral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Isquemia Encefálica/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-5/metabolismo , Interleucina-6/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/metabolismo , Neuroproteção/fisiologia , Transdução de Sinais/fisiologia
13.
Integr Biol (Camb) ; 8(3): 332-40, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26915333

RESUMO

Concentration of viable cell populations in suspension is of interest for several clinical and pre-clinical applications. Here, we report that microfluidic acoustophoresis is an effective method to efficiently concentrate live and viable cells with high target purity without any need for protein fluorescent labeling using antibodies or over-expression. We explored the effect of the acoustic field acoustic energy density and systematically used different protocols to induce apoptosis or cell death and then determined the efficiency of live and dead cell separation. We used the breast cancer cell line MCF-7, the mouse neuroblastoma N2a as well as human embryonic stem cells (hESCs) to demonstrate that this method is gentle and can be applied to different cell populations. First, we induced cell death by means of high osmotic shock using a high concentration of PBS (10×), the protein kinase inhibitor staurosporine, high concentrations of dimethyl sulfoxide (DMSO, 10%), and finally, cell starvation. In all the methods employed, we successfully induced cell death and were able to purify and concentrate the remaining live cells using acoustophoresis. Importantly, the concentration of viable cells was not dependent on a specific cell type. Further, we demonstrate that different death inducing stimuli have different effects on the intrinsic cell properties and therefore affect the efficiency of the acoustophoretic separation.


Assuntos
Acústica/instrumentação , Separação Celular/instrumentação , Sobrevivência Celular , Dispositivos Lab-On-A-Chip , Animais , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Separação Celular/métodos , Feminino , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células MCF-7 , Camundongos , Neurônios/citologia , Pressão Osmótica
14.
J Cereb Blood Flow Metab ; 36(9): 1553-69, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26661199

RESUMO

Microglia respond to focal cerebral ischemia by increasing their production of the neuromodulatory cytokine tumor necrosis factor, which exists both as membrane-anchored tumor necrosis factor and as cleaved soluble tumor necrosis factor forms. We previously demonstrated that tumor necrosis factor knockout mice display increased lesion volume after focal cerebral ischemia, suggesting that tumor necrosis factor is neuroprotective in experimental stroke. Here, we extend our studies to show that mice with intact membrane-anchored tumor necrosis factor, but no soluble tumor necrosis factor, display reduced infarct volumes at one and five days after stroke. This was associated with improved functional outcome after experimental stroke. No changes were found in the mRNA levels of tumor necrosis factor and tumor necrosis factor-related genes (TNFR1, TNFR2, TACE), pro-inflammatory cytokines (IL-1ß, IL-6) or chemokines (CXCL1, CXCL10, CCL2); however, protein expression of TNF, IL-1ß, IL-6 and CXCL1 was reduced in membrane-anchored tumor necrosis factor(Δ/Δ) compared to membrane-anchored tumor necrosis factor(wt/wt) mice one day after experimental stroke. This was paralleled by reduced MHCII expression and a reduction in macrophage infiltration in the ipsilateral cortex of membrane-anchored tumor necrosis factor(Δ/Δ) mice. Collectively, these findings indicate that membrane-anchored tumor necrosis factor mediates the protective effects of tumor necrosis factor signaling in experimental stroke, and therapeutic strategies specifically targeting soluble tumor necrosis factor could be beneficial in clinical stroke therapy.


Assuntos
Isquemia Encefálica/fisiopatologia , Proteínas de Membrana/fisiologia , Neuroproteção , Acidente Vascular Cerebral/sangue , Fator de Necrose Tumoral alfa/genética , Animais , Citocinas/sangue , Citocinas/genética , Camundongos , Camundongos Knockout , RNA Mensageiro/sangue , Solubilidade , Acidente Vascular Cerebral/tratamento farmacológico , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
15.
J Neuroinflammation ; 12: 92, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25968897

RESUMO

BACKGROUND: Retinal ischemia results in a progressive degeneration of neurons and a pathological activation of glial cells, resulting in vision loss. In the brain, progressive damage after ischemic insult has been correlated to neuroinflammatory processes involving microglia. Galectin-3 has been shown to mediate microglial responses to ischemic injury in the brain. Therefore, we wanted to explore the contribution of Galectin-3 (Gal-3) to hypoperfusion-induced retinal degeneration in mice. METHODS: Gal-3 knockout (Gal-3 KO) and wildtype (WT) C57BL/6 mice were subjected to chronic cerebral hypoperfusion by bilateral narrowing of the common carotid arteries using metal coils resulting in a 30% reduction of blood flow. Sham operated mice served as controls. After 17 weeks, the mice were sacrificed and the eyes were analyzed for retinal architecture, neuronal cell survival, and glial reactivity using morphological staining and immunohistochemistry. RESULTS: Hypoperfusion caused a strong increase in Gal-3 expression and microglial activation in WT mice, coupled with severe degenerative damage to all retinal neuronal subtypes, remodeling of the retinal lamination and Müller cell gliosis. In contrast, hypoperfused Gal-3 KO mice displayed a retained laminar architecture, a significant preservation of photoreceptors and ganglion cell neurons, and an attenuation of microglial and Müller cell activation. CONCLUSION: Moderate cerebral blood flow reduction in the mouse results in severe retinal degenerative damage. In mice lacking Gal-3 expression, pathological changes are significantly attenuated. Gal-3 is thereby a potential target for treatment and prevention of hypoperfusion-induced retinal degeneration and a strong candidate for further research as a factor behind retinal degenerative disease.


Assuntos
Doenças das Artérias Carótidas/complicações , Galectina 3/metabolismo , Degeneração Retiniana/metabolismo , Animais , Calbindinas/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Galectina 3/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Neurônios/patologia , Fosfopiruvato Hidratase/metabolismo , Proteína Quinase C/metabolismo , Recoverina/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/patologia , Rodopsina/metabolismo , Fatores de Tempo
16.
J Neuroinflammation ; 11: 203, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25498129

RESUMO

BACKGROUND: The innate immune system contributes to the outcome after stroke, where neuroinflammation and post-stroke systemic immune depression are central features. Tumor necrosis factor (TNF), which exists in both a transmembrane (tm) and soluble (sol) form, is known to sustain complex inflammatory responses associated with stroke. We tested the effect of systemically blocking only solTNF versus blocking both tmTNF and solTNF on infarct volume, functional outcome and inflammation in focal cerebral ischemia. METHODS: We used XPro1595 (a dominant-negative inhibitor of solTNF) and etanercept (which blocks both solTNF and tmTNF) to test the effect of systemic administration on infarct volume, functional recovery and inflammation after focal cerebral ischemia in mice. Functional recovery was evaluated after one, three and five days, and infarct volumes at six hours, 24 hours and five days after ischemia. Brain inflammation, liver acute phase response (APR), spleen and blood leukocyte profiles, along with plasma microvesicle analysis, were evaluated. RESULTS: We found that both XPro1595 and etanercept significantly improved functional outcomes, altered microglial responses, and modified APR, spleen T cell and microvesicle numbers, but without affecting infarct volumes. CONCLUSIONS: Our data suggest that XPro1595 and etanercept improve functional outcome after focal cerebral ischemia by altering the peripheral immune response, changing blood and spleen cell populations and decreasing granulocyte infiltration into the brain. Blocking solTNF, using XPro1595, was just as efficient as blocking both solTNF and tmTNF using etanercept. Our findings may have implications for future treatments with anti-TNF drugs in TNF-dependent diseases.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Animais , Injeções Intravenosas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Resultado do Tratamento , Fator de Necrose Tumoral alfa/administração & dosagem
17.
PLoS One ; 8(5): e64233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724038

RESUMO

BACKGROUND: The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy. METHODS: We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects. RESULTS: BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic processing. CONCLUSION: We conclude that microchannel acoustophoresis can be used for effective continuous flow-based cell separation without affecting cell viability, proliferation, mitochondrial respiration or inflammatory status.


Assuntos
Leucócitos/metabolismo , Técnicas Analíticas Microfluídicas , Microglia/metabolismo , Neoplasias/metabolismo , Células Sanguíneas/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Mitocôndrias/metabolismo , Ultrassom
18.
Blood ; 121(21): 4257-64, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23476050

RESUMO

Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. Although it is well established that many of the age-induced changes are intrinsic to HSCs, less is known regarding the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and after the transplantation of re-differentiated HSCs into new hosts, the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results, therefore, favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging.


Assuntos
Diferenciação Celular/fisiologia , Senescência Celular/fisiologia , Epigênese Genética/fisiologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Diferenciação Celular/genética , Senescência Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Estudo de Associação Genômica Ampla , Camundongos , Camundongos Endogâmicos C57BL , Telômero/genética , Células-Tronco Totipotentes/citologia , Células-Tronco Totipotentes/fisiologia , Transcrição Gênica/fisiologia
19.
J Neuroinflammation ; 8: 75, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21714902

RESUMO

BACKGROUND: Macrophage migration inhibitory factor (MIF) has been proposed to play a detrimental role in stroke. We recently showed that MIF promotes neuronal death and aggravates neurological deficits during the first week after experimental stroke, in mice. Since MIF regulates tissue inflammation, we studied the putative role of MIF in post-stroke inflammation. METHODS: We subjected C57BL/6 mice, Mif-/- (MIF-KO) or Mif+/+ (WT), to a transient occlusion of the right middle cerebral artery (tMCAo) or sham-surgery. We studied MIF expression, GFAP expression and the number of CD74-positive cells in the ischemic brain hemisphere 7 days after tMCAo using primarily immunohistochemistry. We determined IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, KC/CXCL-1 and TNF-α protein levels in the brain (48 h after surgery) and serum (48 h and 7 days after surgery) by a multiplex immunoassay. RESULTS: We observed that MIF accumulates in neurons and astrocytes of the peri-infarct region, as well as in microglia/macrophages of the infarct core up to 7 days after stroke. Among the inflammatory mediators analyzed, we found a significant increase in cerebral IL-12 and KC levels after tMCAo, in comparison to sham-surgery. Importantly, the deletion of Mif did not significantly affect the levels of the cytokines evaluated, in the brain or serum. Moreover, the spleen weight 48 h and 7 days subsequent to tMCAo was similar in WT and MIF-KO mice. Finally, the extent of GFAP immunoreactivity and the number of MIF receptor (CD74)-positive cells within the ischemic brain hemisphere did not differ significantly between WT and MIF-KO mice subjected to tMCAo. CONCLUSIONS: We conclude that MIF does not affect major components of the inflammatory/immune response during the first week after experimental stroke. Based on present and previous evidence, we propose that the deleterious MIF-mediated effects in stroke depend primarily on an intraneuronal and/or interneuronal action.


Assuntos
Inflamação/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia , Animais , Antígenos de Diferenciação de Linfócitos B/imunologia , Encéfalo/citologia , Encéfalo/imunologia , Encéfalo/patologia , Quimiocinas/sangue , Quimiocinas/imunologia , Citocinas/sangue , Citocinas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Infarto da Artéria Cerebral Média , Inflamação/sangue , Inflamação/patologia , Mediadores da Inflamação/sangue , Mediadores da Inflamação/imunologia , Fatores Inibidores da Migração de Macrófagos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neurônios/imunologia , Neurônios/patologia , Baço/anatomia & histologia , Baço/metabolismo , Acidente Vascular Cerebral/sangue
20.
J Neuropathol Exp Neurol ; 70(6): 481-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21572335

RESUMO

Current understanding of microglial involvement in disease is influenced by the observation that recruited bone marrow (BM)-derived cells contribute to reactive microgliosis in BM-chimeric mice. In contrast, a similar phenomenon has not been reported for BM-chimeric rats. We investigated the recruitment and microglial transformation of BM-derived cells in radiation BM-chimeric mice and rats after transient global cerebral ischemia, which elicits a characteristic microglial reaction. Both species displayed microglial hyperplasia and rod cell transformation in the hippocampal CA1 region. In mice, a subpopulation of lesion-reactive microglia originated from transformed BM-derived cells. By contrast, no recruitment or microglial transformation of BM-derived cells was observed in BM-chimeric rats. These results suggest that reactive microglia in rats originate from resident microglia, whereas they have a mixed BM-derived and resident origin in mice, depending on the severity of ischemic tissue damage.


Assuntos
Células da Medula Óssea/patologia , Medula Óssea/patologia , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Microglia/fisiologia , Animais , Animais Geneticamente Modificados , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Células da Medula Óssea/fisiologia , Transplante de Medula Óssea , Antígeno CD11b/metabolismo , Claudina-5 , Modelos Animais de Doenças , Fluoresceínas , Proteínas de Fluorescência Verde/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Ataque Isquêmico Transitório/cirurgia , Antígenos Comuns de Leucócito/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Compostos Orgânicos , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA