Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gut ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38378253

RESUMO

OBJECTIVE: Intestinal fibrosis is considered an inevitable consequence of chronic IBD, leading to stricture formation and need for surgery. During the process of fibrogenesis, extracellular matrix (ECM) components critically regulate the function of mesenchymal cells. We characterised the composition and function of ECM in fibrostenosing Crohn's disease (CD) and control tissues. DESIGN: Decellularised full-thickness intestinal tissue platforms were tested using three different protocols, and ECM composition in different tissue phenotypes was explored by proteomics and validated by quantitative PCR (qPCR) and immunohistochemistry. Primary human intestinal myofibroblasts (HIMFs) treated with milk fat globule-epidermal growth factor 8 (MFGE8) were evaluated regarding the mechanism of their antifibrotic response, and the action of MFGE8 was tested in two experimental intestinal fibrosis models. RESULTS: We established and validated an optimal decellularisation protocol for intestinal IBD tissues. Matrisome analysis revealed elevated MFGE8 expression in CD strictured (CDs) tissue, which was confirmed at the mRNA and protein levels. Treatment with MFGE8 inhibited ECM production in normal control HIMF but not CDs HIMF. Next-generation sequencing uncovered functionally relevant integrin-mediated signalling pathways, and blockade of integrin αvß5 and focal adhesion kinase rendered HIMF non-responsive to MFGE8. MFGE8 prevented and reversed experimental intestinal fibrosis in vitro and in vivo. CONCLUSION: MFGE8 displays antifibrotic effects, and its administration may represent a future approach for prevention of IBD-induced intestinal strictures.

2.
Matrix Biol ; 113: 1-21, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108990

RESUMO

OBJECTIVE: Inflammatory bowel diseases (IBD) cause chronic intestinal damage and extracellular matrix (ECM) remodeling. The ECM may play an active role in inflammation by modulating immune cell functions, including cell adhesion, but this hypothesis has not been tested in IBD. DESIGN: Primary human intestinal myofibroblast (HIMF)-derived ECM from IBD and controls, 3D decellularized colon or ECM molecule-coated scaffolds were tested for their adhesiveness for T cells. Matrisome was analysed via proteomics. Functional integrin blockade was used to investigate the underlying mechanism. Analysis of the pediatric Crohn's disease (CD) RISK inception cohort was used to explore an altered ECM gene expression as a potential predictor for a future complicated disease course. RESULTS: HIMF-derived ECM and 3D decellularized colonic ECM from IBD bound more T cells compared to control. Control HIMFs exposed to the pro-inflammatory cytokines Iinterleukin-1ß (IL-1ß) and tumor necrosis factor (TNF) increased, and to transforming growth factor-ß1 (TGF-ß1) decreased ECM adhesiveness to T cells. Matrisome analysis of the HIMF-derived ECM revealed collagen VI as a major culprit for differences in T cell adhesion. Collagen VI knockdown in HIMF reduced adhesion T cell as did the blockage of integrin αvß1. Elevated gene expression of collagen VI in biopsies of pediatric CD patients was linked to risk for future stricturing disease. CONCLUSION: HIMF-derived ECM in IBD binds a remarkably enhanced number of T cells, which is dependent on Collagen VI and integrin αvß1. Collagen VI expression is a risk factor for a future complicated CD course. Blocking immune cells retention may represent a novel approach to treatment in IBD.


Assuntos
Doenças Inflamatórias Intestinais , Miofibroblastos , Criança , Humanos , Miofibroblastos/metabolismo , Adesividade , Linfócitos T/patologia , Colágeno/metabolismo , Inflamação/metabolismo
3.
Gut ; 71(1): 55-67, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33468536

RESUMO

OBJECTIVE: Creeping fat, the wrapping of mesenteric fat around the bowel wall, is a typical feature of Crohn's disease, and is associated with stricture formation and bowel obstruction. How creeping fat forms is unknown, and we interrogated potential mechanisms using novel intestinal tissue and cell interaction systems. DESIGN: Tissues from normal, UC, non-strictured and strictured Crohn's disease intestinal specimens were obtained. The muscularis propria matrisome was determined via proteomics. Mesenteric fat explants, primary human preadipocytes and adipocytes were used in multiple ex vivo and in vitro cell migration systems on muscularis propria muscle cell derived or native extracellular matrix. Functional experiments included integrin characterisation via flow cytometry and their inhibition with specific blocking antibodies and chemicals. RESULTS: Crohn's disease muscularis propria cells produced an extracellular matrix scaffold which is in direct spatial and functional contact with the immediately overlaid creeping fat. The scaffold contained multiple proteins, but only fibronectin production was singularly upregulated by transforming growth factor-ß1. The muscle cell-derived matrix triggered migration of preadipocytes out of mesenteric fat, fibronectin being the dominant factor responsible for their migration. Blockade of α5ß1 on the preadipocyte surface inhibited their migration out of mesenteric fat and on 3D decellularised intestinal tissue extracellular matrix. CONCLUSION: Crohn's disease creeping fat appears to result from the migration of preadipocytes out of mesenteric fat and differentiation into adipocytes in response to an increased production of fibronectin by activated muscularis propria cells. These new mechanistic insights may lead to novel approaches for prevention of creeping fat-associated stricture formation.


Assuntos
Adipócitos/patologia , Movimento Celular , Doença de Crohn/patologia , Intestinos/patologia , Músculo Liso/patologia , Adipogenia/fisiologia , Tecido Adiposo/patologia , Diferenciação Celular , Células Cultivadas , Matriz Extracelular/patologia , Fibronectinas/metabolismo , Humanos , Alicerces Teciduais
4.
Horm Behav ; 66(2): 421-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25007980

RESUMO

Women are 60% more likely to suffer from an anxiety disorder than men. One hypothesis for this difference may be that females exhibit increased rates of fear generalization. Females generalize fear to a neutral context faster than males, a process driven, in part, by estrogens. In the current study, ovariectomized adult female Long-Evans rats were given acute injections of estradiol benzoate (15µg/0.1mL sesame oil) or sesame oil during a passive avoidance procedure to determine if estrogens increase fear generalization through an effect on fear memory acquisition/consolidation or through fear memory retrieval. Animals injected 1h prior to training generalized to the neutral context 24h later but not 7days after training. Generalization was also seen when injections occurred 24h before testing, but not when tested at immediate (1h) or intermediate (6h) time points. In Experiment 3, animals were injected with estrogen receptor (ER) agonists, PPT or DPN, to determine which ER subtype(s) increased fear generalization. Only the ERß agonist, DPN, increased fear generalization when testing occurred 24h after injection. Our results indicate that estradiol increases fear generalization through an effect on fear memory retrieval mechanisms by activation of ERß.


Assuntos
Receptor beta de Estrogênio/agonistas , Medo/psicologia , Generalização Psicológica/efeitos dos fármacos , Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Feminino , Ovariectomia , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA