Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(5)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963009

RESUMO

A longstanding conundrum in Treponema pallidum biology concerns how the spirochete generates sufficient energy to fulfill its complex pathogenesis processes during human syphilitic infection. For decades, it has been assumed that the bacterium relies solely on glucose catabolism (via glycolysis) for generation of its ATP. However, the organism's robust motility, believed to be essential for human tissue invasion and dissemination, would require abundant ATP likely not provided by the parsimony of glycolysis. As such, additional ATP generation, either via a chemiosmotic gradient, substrate-level phosphorylation, or both, likely exists in T. pallidum Along these lines, we have hypothesized that T. pallidum exploits an acetogenic energy conservation pathway that relies on the redox chemistry of flavins. Central to this hypothesis is the apparent existence in T. pallidum of an acetogenic pathway for the conversion of d-lactate to acetate. Herein we have characterized the structural, biophysical, and biochemical properties of the first enzyme (d-lactate dehydrogenase [d-LDH]; TP0037) predicted in this pathway. Binding and enzymatic studies showed that recombinant TP0037 consumed d-lactate and NAD+ to produce pyruvate and NADH. The crystal structure of TP0037 revealed a fold similar to that of other d-acid dehydrogenases; residues in the cofactor-binding and active sites were homologous to those of other known d-LDHs. The crystal structure and solution biophysical experiments revealed the protein's propensity to dimerize, akin to other d-LDHs. This study is the first to elucidate the enzymatic properties of T. pallidum's d-LDH, thereby providing new compelling evidence for a flavin-dependent acetogenic energy conservation (ATP-generating) pathway in T. pallidumIMPORTANCE Because T. pallidum lacks a Krebs cycle and the capability for oxidative phosphorylation, historically it has been difficult to reconcile how the syphilis spirochete generates sufficient ATP to fulfill its energy needs, particularly for its robust motility, solely from glycolysis. We have postulated the existence in T. pallidum of a flavin-dependent acetogenic energy conservation pathway that would generate additional ATP for T. pallidum bioenergetics. In the proposed acetogenic pathway, first d-lactate would be converted to pyruvate. Pyruvate would then be metabolized to acetate in three additional steps, with ATP being generated via substrate-level phosphorylation. This study provides structural, biochemical, and biophysical evidence for the first T. pallidum enzyme in the pathway (TP0037; d-lactate dehydrogenase) requisite for the conversion of d-lactate to pyruvate. The findings represent the first experimental evidence to support a role for an acetogenic energy conservation pathway that would contribute to nonglycolytic ATP production in T. pallidum.


Assuntos
Acetatos/metabolismo , Metabolismo Energético , Lactato Desidrogenases/metabolismo , Ácido Láctico/metabolismo , Redes e Vias Metabólicas , Treponema pallidum/enzimologia , Trifosfato de Adenosina/metabolismo , Ácido Pirúvico/metabolismo
2.
Protein Sci ; 26(4): 847-856, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28168761

RESUMO

The spirochete Treponema pallidum is the causative agent of syphilis, a sexually transmitted infection of major global importance. Other closely related subspecies of Treponema also are the etiological agents of the endemic treponematoses, such as yaws, pinta, and bejel. The inability of T. pallidum and its close relatives to be cultured in vitro has prompted efforts to characterize T. pallidum's proteins structurally and biophysically, particularly those potentially relevant to treponemal membrane biology, with the goal of possibly revealing the functions of those proteins. This report describes the structure of the treponemal protein Tp0737; this polypeptide has a fold characteristic of a class of periplasmic ligand-binding proteins associated with ABC-type transporters. Although no ligand for the protein was observed in electron-density maps, and thus the nature of the native ligand remains obscure, the structural data described herein provide a foundation for further efforts to elucidate the ligand and thus the function of this protein in T. pallidum.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas Periplásmicas/química , Treponema pallidum/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cristalografia por Raios X , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Treponema pallidum/genética , Treponema pallidum/metabolismo
3.
Microbiologyopen ; 5(1): 21-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626129

RESUMO

We recently reported a flavin-trafficking protein (Ftp) in the syphilis spirochete Treponema pallidum (Ftp_Tp) as the first bacterial metal-dependent FAD pyrophosphatase that hydrolyzes FAD into AMP and FMN in the periplasm. Orthologs of Ftp_Tp in other bacteria (formerly ApbE) appear to lack this hydrolytic activity; rather, they flavinylate the redox subunit, NqrC, via their metal-dependent FMN transferase activity. However, nothing has been known about the nature or mechanism of metal-dependent Ftp catalysis in either Nqr- or Rnf-redox-containing bacteria. In the current study, we identified a bimetal center in the crystal structure of Escherichia coli Ftp (Ftp_Ec) and show via mutagenesis that a single amino acid substitution converts it from an FAD-binding protein to a Mg(2+)-dependent FAD pyrophosphatase (Ftp_Tp-like). Furthermore, in the presence of protein substrates, both types of Ftps are capable of flavinylating periplasmic redox-carrying proteins (e.g., RnfG_Ec) via the metal-dependent covalent attachment of FMN. A high-resolution structure of the Ftp-mediated flavinylated protein of Shewanella oneidensis NqrC identified an essential lysine in phosphoester-threonyl-FMN bond formation in the posttranslationally modified flavoproteins. Together, these discoveries broaden our understanding of the physiological capabilities of the bacterial periplasm, and they also clarify a possible mechanism by which flavoproteins are generated.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Flavoproteínas/metabolismo , Periplasma/enzimologia , Processamento de Proteína Pós-Traducional , Pirofosfatases/metabolismo , Shewanella/enzimologia , Monofosfato de Adenosina/metabolismo , Cristalografia por Raios X , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/biossíntese , Mutagênese Sítio-Dirigida , Oxirredução , Periplasma/metabolismo , Transporte Proteico , Pirofosfatases/genética , Shewanella/metabolismo
4.
J Mol Biol ; 420(1-2): 70-86, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22504226

RESUMO

Tripartite ATP-independent periplasmic transporters (TRAP-Ts) are bacterial transport systems that have been implicated in the import of small molecules into the cytoplasm. A newly discovered subfamily of TRAP-Ts [tetratricopeptide repeat-protein associated TRAP transporters (TPATs)] has four components. Three are common to both TRAP-Ts and TPATs: the P component, a ligand-binding protein, and a transmembrane symporter apparatus comprising the M and Q components (M and Q are sometimes fused to form a single polypeptide). TPATs are distinguished from TRAP-Ts by the presence of a unique protein called the "T component". In Treponema pallidum, this protein (TatT) is a water-soluble trimer whose protomers are each perforated by a pore. Its respective P component (TatP(T)) interacts with the TatT in vitro and in vivo. In this work, we further characterized this interaction. Co-crystal structures of two complexes between the two proteins confirm that up to three monomers of TatP(T) can bind to the TatT trimer. A putative ligand-binding cleft of TatP(T) aligns with the pore of TatT, strongly suggesting ligand transfer between T and P(T). We used a combination of site-directed mutagenesis and analytical ultracentrifugation to derive thermodynamic parameters for the interactions. These observations confirm that the observed crystallographic interface is recapitulated in solution. These results prompt a hypothesis of the molecular mechanism(s) of hydrophobic ligand transport by the TPATs.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Lipoproteínas/química , Proteínas Periplásmicas de Ligação/química , Termodinâmica , Treponema pallidum/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Periplásmicas/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Soluções
5.
J Biol Chem ; 281(12): 8072-81, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16418175

RESUMO

Treponema pallidum, the bacterial agent of syphilis, cannot be cultivated in vitro. This constraint has severely impeded the study of the membrane biology of this complex human pathogen. A structure-to-function approach thus was adopted as a means of discerning the likely function of Tp0319, a 35-kDa cytoplasmic membrane-associated lipoprotein of T. pallidum formerly designated as TmpC. A 1.7-A crystal structure showed that recombinant Tp0319 (rTp0319) consists of two alpha/beta domains, linked by three crossovers, with a deep cleft between them akin to ATP-binding cassette (ABC) receptors. In the cleft, a molecule of inosine was bound. Isothermal titration calorimetry demonstrated that rTp0319 specifically binds purine nucleosides (dissociation constant (Kd) approximately 10(-7) M). This predilection for purine nucleosides by rTp0319 is consistent with its likely role as a receptor component of a cytoplasmic membrane-associated transporter system. Reverse transcription-PCR analysis of RNA isolated from rabbit tissue-extracted T. pallidum additionally showed that tp0319 is transcriptionally linked to four other downstream open reading frames, thereby supporting the existence of an ABC-like operon (tp0319-0323). We herein thus re-name tp0319 as purine nucleoside receptor A (pnrA), with its operonic partners tp0320-0323 designated as pnrB-E, respectively. Our study not only infers that PnrA transports purine nucleosides essential for the survival of T. pallidum within its obligate human host, but to our knowledge, this is the first description of an ABC-type nucleoside transport system in any bacterium. PnrA has been grouped with a functionally uncharacterized protein family (HBG016869), thereby implying that other members of the family may have similar nucleoside-binding function(s).


Assuntos
Lipoproteínas/metabolismo , Treponema pallidum/metabolismo , Trifosfato de Adenosina/química , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Transporte Biológico , Calorimetria , Membrana Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Citoplasma/metabolismo , Primers do DNA/química , Escherichia coli/metabolismo , Genes Bacterianos , Histidina/química , Humanos , Cinética , Ligantes , Proteínas de Membrana , Modelos Químicos , Modelos Moleculares , Nucleosídeos/química , Fases de Leitura Aberta , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Purinas/química , RNA/química , Coelhos , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA