Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood Cancer J ; 10(2): 16, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029705

RESUMO

Large-scale chromosomal translocations are frequent oncogenic drivers in acute myeloid leukemia (AML). These translocations often occur in critical transcriptional/epigenetic regulators and contribute to malignant cell growth through alteration of normal gene expression. Despite this knowledge, the specific gene expression alterations that contribute to the development of leukemia remain incompletely understood. Here, through characterization of transcriptional regulation by the RUNX1-ETO fusion protein, we have identified Ras-association domain family member 2 (RASSF2) as a critical gene that is aberrantly transcriptionally repressed in t(8;21)-associated AML. Re-expression of RASSF2 specifically inhibits t(8;21) AML development in multiple models. Through biochemical and functional studies, we demonstrate RASSF2-mediated functions to be dependent on interaction with Hippo kinases, MST1 and MST2, but independent of canonical Hippo pathway signaling. Using proximity-based biotin labeling we define the RASSF2-proximal proteome in leukemia cells and reveal association with Rac GTPase-related proteins, including an interaction with the guanine nucleotide exchange factor, DOCK2. Importantly, RASSF2 knockdown impairs Rac GTPase activation, and RASSF2 expression is broadly correlated with Rac-mediated signal transduction in AML patients. Together, these data reveal a previously unappreciated mechanistic link between RASSF2, Hippo kinases, and Rac activity with potentially broad functional consequences in leukemia.


Assuntos
Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/prevenção & controle , Proteínas de Fusão Oncogênica/metabolismo , Translocação Genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Biomarcadores Tumorais/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Fusão Oncogênica/genética , RNA Longo não Codificante , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rac de Ligação ao GTP/genética
2.
Mol Ther ; 27(4): 866-877, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902585

RESUMO

It has previously been shown that engineered zinc finger nucleases (ZFNs) can be packaged into adeno-associated viruses (AAVs) and delivered intravenously into mice, non-human primates, and most recently, humans to induce highly efficient therapeutic genome editing in the liver. Lipid nanoparticles (LNPs) are synthetic delivery vehicles that enable repeat administration and are not limited by the presence of preexisting neutralizing antibodies in patients. Here, we show that mRNA encoding ZFNs formulated into LNP can enable >90% knockout of gene expression in mice by targeting the TTR or PCSK9 gene, at mRNA doses 10-fold lower than has ever been reported. Additionally, co-delivering mRNA-LNP containing ZFNs targeted to intron 1 of the ALB locus with AAV packaged with a promoterless human IDS or FIX therapeutic transgene can result in high levels of targeted integration and subsequent therapeutically relevant levels of protein expression in mice. Finally, we show repeat administration of ZFN mRNA-LNP after a single AAV donor dose results in significantly increased levels of genome editing and transgene expression compared to a single dose. These results demonstrate LNP-mediated ZFN mRNA delivery can drive highly efficient levels of in vivo genome editing and can potentially offer a new treatment modality for a variety of diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Edição de Genes/métodos , Nanopartículas/administração & dosagem , RNA Mensageiro/administração & dosagem , Nucleases de Dedos de Zinco/administração & dosagem , Animais , Células Cultivadas , Dependovirus/genética , Feminino , Técnicas de Inativação de Genes , Vetores Genéticos , Hepatócitos/metabolismo , Íntrons/genética , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pré-Albumina/genética , Pró-Proteína Convertase 9/genética , RNA Mensageiro/genética , Transgenes/genética , Nucleases de Dedos de Zinco/farmacologia
3.
Mol Ther ; 27(1): 178-187, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528089

RESUMO

Mucopolysaccharidosis type I (MPS I) is a severe disease due to deficiency of the lysosomal hydrolase α-L-iduronidase (IDUA) and the subsequent accumulation of the glycosaminoglycans (GAG), leading to progressive, systemic disease and a shortened lifespan. Current treatment options consist of hematopoietic stem cell transplantation, which carries significant mortality and morbidity risk, and enzyme replacement therapy, which requires lifelong infusions of replacement enzyme; neither provides adequate therapy, even in combination. A novel in vivo genome-editing approach is described in the murine model of Hurler syndrome. A corrective copy of the IDUA gene is inserted at the albumin locus in hepatocytes, leading to sustained enzyme expression, secretion from the liver into circulation, and subsequent uptake systemically at levels sufficient for correction of metabolic disease (GAG substrate accumulation) and prevention of neurobehavioral deficits in MPS I mice. This study serves as a proof-of-concept for this platform-based approach that should be broadly applicable to the treatment of a wide array of monogenic diseases.


Assuntos
Edição de Genes/métodos , Terapia Genética/métodos , Mucopolissacaridose I/terapia , Nucleases de Dedos de Zinco/metabolismo , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Feminino , Glicosaminoglicanos/metabolismo , Iduronidase/metabolismo , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Masculino , Camundongos , Mucopolissacaridose I/tratamento farmacológico , Mucopolissacaridose I/metabolismo , Nucleases de Dedos de Zinco/genética
4.
Blood ; 126(15): 1777-84, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26297739

RESUMO

Site-specific genome editing provides a promising approach for achieving long-term, stable therapeutic gene expression. Genome editing has been successfully applied in a variety of preclinical models, generally focused on targeting the diseased locus itself; however, limited targeting efficiency or insufficient expression from the endogenous promoter may impede the translation of these approaches, particularly if the desired editing event does not confer a selective growth advantage. Here we report a general strategy for liver-directed protein replacement therapies that addresses these issues: zinc finger nuclease (ZFN) -mediated site-specific integration of therapeutic transgenes within the albumin gene. By using adeno-associated viral (AAV) vector delivery in vivo, we achieved long-term expression of human factors VIII and IX (hFVIII and hFIX) in mouse models of hemophilia A and B at therapeutic levels. By using the same targeting reagents in wild-type mice, lysosomal enzymes were expressed that are deficient in Fabry and Gaucher diseases and in Hurler and Hunter syndromes. The establishment of a universal nuclease-based platform for secreted protein production would represent a critical advance in the development of safe, permanent, and functional cures for diverse genetic and nongenetic diseases.


Assuntos
Albuminas/genética , Terapia de Reposição de Enzimas , Terapia Genética , Genoma , Fígado/metabolismo , Transgenes/fisiologia , Albuminas/metabolismo , Animais , Dependovirus/genética , Endonucleases , Doença de Fabry/genética , Doença de Fabry/terapia , Fator IX/genética , Fator VIII/genética , Doença de Gaucher/genética , Doença de Gaucher/terapia , Vetores Genéticos/administração & dosagem , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lisossomos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Regiões Promotoras Genéticas/genética , Edição de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Dedos de Zinco
5.
Mol Cell Biol ; 35(17): 3071-82, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26124281

RESUMO

Myelodysplastic syndromes (MDS) are a group of neoplasms characterized by ineffective myeloid hematopoiesis and various risks for leukemia. SRSF2, a member of the serine/arginine-rich (SR) family of splicing factors, is one of the mutation targets associated with poor survival in patients suffering from myelodysplastic syndromes. Here we report the biological function of SRSF2 in hematopoiesis by using conditional knockout mouse models. Ablation of SRSF2 in the hematopoietic lineage caused embryonic lethality, and Srsf2-deficient fetal liver cells showed significantly enhanced apoptosis and decreased levels of hematopoietic stem/progenitor cells. Induced ablation of SRSF2 in adult Mx1-Cre Srsf2(flox/flox) mice upon poly(I):poly(C) injection demonstrated a significant decrease in lineage(-) Sca(+) c-Kit(+) cells in bone marrow. To reveal the functional impact of myelodysplastic syndromes-associated mutations in SRSF2, we analyzed splicing responses on the MSD-L cell line and found that the missense mutation of proline 95 to histidine (P95H) and a P95-to-R102 in-frame 8-amino-acid deletion caused significant changes in alternative splicing. The affected genes were enriched in cancer development and apoptosis. These findings suggest that intact SRSF2 is essential for the functional integrity of the hematopoietic system and that its mutations likely contribute to development of myelodysplastic syndromes.


Assuntos
Células Sanguíneas/citologia , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Síndromes Mielodisplásicas/genética , Proteínas Nucleares/genética , Ribonucleoproteínas/genética , Sequência de Aminoácidos , Animais , Apoptose/genética , Células da Medula Óssea/citologia , Transplante de Medula Óssea , Linhagem Celular , Sobrevivência Celular/genética , Células HEK293 , Humanos , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Poli I-C/farmacologia , Interferência de RNA , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Interferente Pequeno , Fatores de Processamento de Serina-Arginina
6.
Leuk Lymphoma ; 55(4): 884-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23772668

RESUMO

The 8;21 translocation is the most common chromosomal aberration occurring in acute myeloid leukemia (AML). This translocation causes expression of the RUNX1-ETO (AML1-ETO) fusion protein, which cooperates with additional mutations in leukemia development. We report here that interferons (IFNs) and IFN-stimulated genes are a group of genes consistently up-regulated by RUNX1-ETO in both human and murine models. RUNX1-ETO-induced up-regulation of IFN-stimulated genes occurs primarily via type I IFN signaling with a requirement for the IFNAR complex. Addition of exogenous IFN in vitro significantly reduces the increase in self-renewal potential induced by both RUNX1-ETO and its leukemogenic splicing isoform RUNX1-ETO9a. Finally, loss of type I IFN signaling via knockout of Ifnar1 significantly accelerates leukemogenesis in a t(8;21) murine model. This demonstrates the role of increased IFN signaling as an important factor inhibiting t(8;21) fusion protein function and leukemia development and supports the use of type I IFNs in the treatment of AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Interferon Tipo I/farmacologia , Leucemia/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Translocação Genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Modelos Animais de Doenças , Humanos , Leucemia/metabolismo , Camundongos , Camundongos Knockout , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1 , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Células U937
7.
PLoS Genet ; 9(10): e1003765, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130502

RESUMO

Fusion protein RUNX1-ETO (AML1-ETO, RUNX1-RUNX1T1) is expressed as the result of the 8q22;21q22 translocation [t(8;21)], which is one of the most common chromosomal abnormalities found in acute myeloid leukemia. RUNX1-ETO is thought to promote leukemia development through the aberrant regulation of RUNX1 (AML1) target genes. Repression of these genes occurs via the recruitment of the corepressors N-COR and SMRT due to their interaction with ETO. Mechanisms of RUNX1-ETO target gene upregulation remain less well understood. Here we show that RUNX1-ETO9a, the leukemogenic alternatively spliced transcript expressed from t(8;21), upregulates target gene Alox5, which is a gene critically required for the promotion of chronic myeloid leukemia development by BCR-ABL. Loss of Alox5 expression reduces activity of RUNX1-ETO9a, MLL-AF9 and PML-RARα in vitro. However, Alox5 is not essential for the induction of leukemia by RUNX1-ETO9a in vivo. Finally, we demonstrate that the upregulation of Alox5 by RUNX1-ETO9a occurs via the C2H2 zinc finger transcription factor KLF6, a protein required for early hematopoiesis and yolk sac development. Furthermore, KLF6 is specifically upregulated by RUNX1-ETO in human leukemia cells. This identifies KLF6 as a novel mediator of t(8;21) target gene regulation, providing a new mechanism for RUNX1-ETO transcriptional control.


Assuntos
Araquidonato 5-Lipoxigenase/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fatores de Transcrição Kruppel-Like/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Processamento Alternativo , Animais , Linhagem Celular Tumoral , Aberrações Cromossômicas , Regulação Leucêmica da Expressão Gênica , Humanos , Fator 6 Semelhante a Kruppel , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1 , Fatores de Transcrição/genética
8.
Blood ; 121(18): 3714-7, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23426948

RESUMO

AML1-ETO (RUNX1-ETO) fusion proteins are generated by the 8;21 translocation, commonly found in acute myeloid leukemia, which fuses the AML1 (RUNX1) and ETO (MTG8, RUNX1T1) genes. Previous studies have shown that AML1-ETO interferes with AML1 function but requires additional cooperating mutations to induce leukemia development. In mouse models, AML1-ETO forms lacking the C-terminus have been shown to have greatly enhanced leukemogenic potential. Here, we investigate the role of 2 AML1-ETO C-terminal-interacting proteins, N-CoR, a transcriptional corepressor, and SON, a splicing/transcription factor required for cell cycle progression, in AML1-ETO-induced leukemia development. AML1-ETO-W692A loses N-CoR binding at NHR4, displays attenuated transcriptional repression ability and decreased cellular dysregulation, and promotes leukemia in vivo. These results support the importance of the degree of dysregulation by AML1-ETO in cellular transformation and demonstrate that AML1-ETO-W692A can be used as an effective experimental model for determining which factors compromise the leukemogenic potential of AML1-ETO.


Assuntos
Transformação Celular Neoplásica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia/genética , Proteínas de Fusão Oncogênica/genética , Animais , Células Cultivadas , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo/genética , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Correpressor 1 de Receptor Nuclear/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Ligação Proteica/genética , Proteína 1 Parceira de Translocação de RUNX1
9.
J Biol Chem ; 288(8): 5381-8, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23322776

RESUMO

SON is a DNA- and RNA-binding protein localized in nuclear speckles. Although its function in RNA splicing for effective cell cycle progression and genome stability was recently unveiled, other mechanisms of SON functions remain unexplored. Here, we report that SON regulates GATA-2, a key transcription factor involved in hematopoietic stem cell maintenance and differentiation. SON is highly expressed in undifferentiated hematopoietic stem/progenitor cells and leukemic blasts. SON knockdown leads to significant depletion of GATA-2 protein with marginal down-regulation of GATA-2 mRNA. We show that miR-27a is up-regulated upon SON knockdown and targets the 3'-UTR of GATA-2 mRNA in hematopoietic cells. Up-regulation of miR-27a was due to activation of the promoter of the miR-23a∼27a∼24-2 cluster, suggesting that SON suppresses this promoter to lower the microRNAs from this cluster. Our data revealed a previously unidentified role of SON in microRNA production via regulating the transcription process, thereby modulating GATA-2 at the protein level during hematopoietic differentiation.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fator de Transcrição GATA2/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Hematopoese , Humanos , Células K562 , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Regiões Promotoras Genéticas , Splicing de RNA , RNA Mensageiro/metabolismo , Células U937 , Regulação para Cima
10.
Mol Cell ; 42(2): 185-98, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21504830

RESUMO

It has been suspected that cell-cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell-cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing cofactor contributing to efficient splicing of cell-cycle regulators. Downregulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell-cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient cotranscriptional RNA processing. These results reveal a mechanism for controlling cell-cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases.


Assuntos
Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Genes cdc , Splicing de RNA , Spliceossomos/metabolismo , Segregação de Cromossomos , Citocinese , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HEK293 , Células HeLa , Humanos , Células K562 , Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor , Interferência de RNA , RNA Polimerase II/metabolismo , Fuso Acromático/metabolismo , Fatores de Tempo , Transfecção
11.
Plant Mol Biol ; 69(6): 699-709, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19112554

RESUMO

Targeted transgene integration in plants remains a significant technical challenge for both basic and applied research. Here it is reported that designed zinc finger nucleases (ZFNs) can drive site-directed DNA integration into transgenic and native gene loci. A dimer of designed 4-finger ZFNs enabled intra-chromosomal reconstitution of a disabled gfp reporter gene and site-specific transgene integration into chromosomal reporter loci following co-transformation of tobacco cell cultures with a donor construct comprised of sequences necessary to complement a non-functional pat herbicide resistance gene. In addition, a yeast-based assay was used to identify ZFNs capable of cleaving a native endochitinase gene. Agrobacterium delivery of a Ti plasmid harboring both the ZFNs and a donor DNA construct comprising a pat herbicide resistance gene cassette flanked by short stretches of homology to the endochitinase locus yielded up to 10% targeted, homology-directed transgene integration precisely into the ZFN cleavage site. Given that ZFNs can be designed to recognize a wide range of target sequences, these data point toward a novel approach for targeted gene addition, replacement and trait stacking in plants.


Assuntos
Endonucleases/metabolismo , Transgenes/genética , Dedos de Zinco/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Quitinases/genética , Endonucleases/genética , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA