Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(7): e2400062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506156

RESUMO

Obesity is a global health issue characterized by the excessive fat accumulation, leading to an increased risk of chronic noncommunicable diseases (NCDs), including metabolic dysfunction-associated fatty liver disease (MAFLD), which can progress from simple steatosis to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, there are no approved pharmacological protocols for prevention/treatment of MAFLD, and due the complexity lying beneath these mechanisms, monotherapies are unlikely to be efficacious. This review article analyzes the possibility that NCDs can be prevented or attenuated by the combination of bioactive substances, as they could promote higher response rates, maximum reaction results, additive or synergistic effects due to compounds having similar or different mechanisms of action and/or refraining possible side effects, related to the use of lower doses and exposures times than monotherapies. Accordingly, prevention of mouse MAFLD is observed with the combination of the omega-3 docosahexaenoic acid with the antioxidant hydroxytyrosol, whereas attenuation of mild cognitive impairment is attained by folic acid plus cobalamin in elderly patients. The existence of several drawbacks underlying published monotherapies or combined trials, opens space for adequate and stricter experimental and clinical tryouts to achieve meaningful outcomes with human applicability.


Assuntos
Carcinoma Hepatocelular , Ácidos Graxos Ômega-3 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Doenças não Transmissíveis , Idoso , Humanos , Animais , Camundongos , Doenças não Transmissíveis/prevenção & controle , Antioxidantes , Hepatopatia Gordurosa não Alcoólica/prevenção & controle
2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37958514

RESUMO

The complex interplay between dietary factors, inflammation, and macrophage polarization is pivotal in the pathogenesis and progression of chronic liver diseases (CLDs). Omega-3 fatty acids (FAs) have brought in attention due to their potential to modulate inflammation and exert protective effects in various pathological conditions. Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise in mitigating inflammation and enhancing the resolution of inflammatory responses. They influence the M1/M2 macrophage phenotype balance, promoting a shift towards the M2 anti-inflammatory phenotype. Specialized pro-resolving mediators (SPMs), such as resolvins (Rvs), protectins (PDs), and maresins (MaRs), have emerged as potent regulators of inflammation and macrophage polarization. They show anti-inflammatory and pro-resolving properties, by modulating the expression of cytokines, facilitate the phagocytosis of apoptotic cells, and promote tissue repair. MaR1, in particular, has demonstrated significant hepatoprotective effects by promoting M2 macrophage polarization, reducing oxidative stress, and inhibiting key inflammatory pathways such as NF-κB. In the context of CLDs, such as nonalcoholic fatty liver disease (NAFLD) and cirrhosis, omega-3s and their SPMs have shown promise in attenuating liver injury, promoting tissue regeneration, and modulating macrophage phenotypes. The aim of this article was to analyze the emerging role of omega-3 FAs and their SPMs in the context of macrophage polarization, with special interest in the mechanisms underlying their effects and their interactions with other cell types within the liver microenvironment, focused on CLDs and the development of novel therapeutic strategies.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatias , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Anti-Inflamatórios/uso terapêutico , Hepatopatias/metabolismo , Fenótipo , Mediadores da Inflamação/metabolismo
3.
Aging (Albany NY) ; 15(10): 4035-4050, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244285

RESUMO

One of the most pronounced changes in the elderly is loss of strength and mobility due to the decline of skeletal muscle function, resulting in a multifactorial condition termed sarcopenia. Although significant clinical changes begin to manifest at advanced ages, recent studies have shown that changes at the cellular and molecular level precede the symptomatology of sarcopenia. By utilizing a single-cell transcriptomic atlas of mouse skeletal muscle across the lifespan, we identified a clear sign of immune senescence that presents during middle age. More importantly, the change in macrophage phenotype in middle age may explain the changes in extracellular matrix composition, especially collagen synthesis, that contributes to fibrosis and overall muscle weakness with advanced age. Our results show a novel paradigm whereby skeletal muscle dysfunction is driven by alterations in tissue-resident macrophages before the appearance of clinical symptoms in middle-aged mice, providing a new therapeutic approach via regulation of immunometabolism.


Assuntos
Sarcopenia , Camundongos , Animais , Envelhecimento/fisiologia , Longevidade , Músculo Esquelético/fisiologia , Macrófagos
4.
Molecules ; 26(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34684731

RESUMO

Type 2 diabetes and obesity are major problems worldwide and dietary polyphenols have shown efficacy to ameliorate signs of these diseases. Anthocyanins from berries display potent antioxidants and protect against weight gain and insulin resistance in different models of diet-induced metabolic syndrome. Olanzapine is known to induce an accelerated form of metabolic syndrome. Due to the aforementioned, we evaluated whether delphinidin-3,5-O-diglucoside (DG) and delphinidin-3-O-sambubioside-5-O-glucoside (DS), two potent antidiabetic anthocyanins isolated from Aristotelia chilensis fruit, could prevent olanzapine-induced steatosis and insulin resistance in liver and skeletal muscle cells, respectively. HepG2 liver cells and L6 skeletal muscle cells were co-incubated with DG 50 µg/mL or DS 50 µg/mL plus olanzapine 50 µg/mL. Lipid accumulation was determined in HepG2 cells while the expression of p-Akt as a key regulator of the insulin-activated signaling pathways, mitochondrial function, and glucose uptake was assessed in L6 cells. DS and DG prevented olanzapine-induced lipid accumulation in liver cells. However, insulin signaling impairment induced by olanzapine in L6 cells was not rescued by DS and DG. Thus, anthocyanins modulate lipid metabolism, which is a relevant factor in hepatic tissue, but do not significantly influence skeletal muscle, where a potent antioxidant effect of olanzapine was found.


Assuntos
Antocianinas/farmacologia , Elaeocarpaceae/metabolismo , Glucosídeos/farmacologia , Antocianinas/química , Antocianinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado Gorduroso/metabolismo , Glucosídeos/química , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Olanzapina , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
5.
Mol Cell Endocrinol ; 461: 277-283, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-28943275

RESUMO

Mifepristone is the only FDA-approved drug for glycaemia control in patients with Cushing's syndrome and type 2 diabetes. Mifepristone also has beneficial effects in animal models of diabetes and patients with antipsychotic treatment-induced obesity. However, the mechanisms through which Mifepristone produces its beneficial effects are not completely elucidated. PURPOSE: To determine the effects of mifepristone on insulin-stimulated glucose uptake on a model of L6 rat-derived skeletal muscle cells. RESULTS: Mifepristone enhanced insulin-dependent glucose uptake, GLUT4 translocation to the plasma membrane and Akt Ser473 phosphorylation in L6 myotubes. In addition, mifepristone reduced oxygen consumption and ATP levels and increased AMPK Thr172 phosphorylation. The knockdown of AMPK prevented the effects of mifepristone on insulin response. CONCLUSIONS: Mifepristone enhanced insulin-stimulated glucose uptake through a mechanism that involves a decrease in mitochondrial function and AMPK activation in skeletal muscle cells.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Mifepristona/farmacologia , Células Musculares/metabolismo , Músculo Esquelético/citologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenilato Quinase/metabolismo , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Células Musculares/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos
6.
J Cardiol ; 70(6): 578-583, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28506639

RESUMO

BACKGROUND: Increased inflammation biomarkers plasma levels, including C-reactive protein (CRP), have been associated with the initiation and perpetuation of atrial fibrillation (AF). However, it is not known whether an increased CRP plasma level, without concomitant inflammation, is sufficient to induce AF. We investigated whether higher CRP plasma levels, determined by the presence of +219G>A CRP gene polymorphism, is associated with an increased risk of post-operative AF. METHODS: One hundred and fifteen adult patients submitted to elective coronary surgery were genotyped for the CRP +219G>A polymorphism. CRP plasma levels were determined by enzyme-linked immunosorbent assay. RESULTS: CRP plasma levels before surgery were higher in GG than in GA+AA patients (3.4±3.1 vs. 1.7±1.8, p<0.015). Thirteen percent of the patients presented post-operative AF. Despite the positive correlation between the polymorphism and CRP levels, there was no significant difference in the occurrence of post-operative AF between the different genotypes. CONCLUSIONS: These results suggest that increased CRP plasma levels that are not associated with an inflammatory process are not sufficient to trigger AF after cardiac surgery.


Assuntos
Fibrilação Atrial/sangue , Proteína C-Reativa/análise , Idoso , Fibrilação Atrial/genética , Biomarcadores/sangue , Proteína C-Reativa/genética , Estudos de Casos e Controles , Procedimentos Cirúrgicos Eletivos , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Humanos , Inflamação/sangue , Inflamação/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Período Pós-Operatório
7.
Echocardiography ; 33(2): 242-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26394799

RESUMO

OBJECTIVE: Advanced age is an independent predictor of postoperative atrial fibrillation (POAF) in patients undergoing coronary artery bypass surgery. We evaluated whether left atrial (LA) dysfunction assessed by strain contributes to identifying elderly patients prone to POAF. METHODS: Case-control study of 70 subjects undergoing coronary artery bypass surgery. Clinical and laboratory characteristics were recorded at baseline and 72 hours after surgery. Echocardiography was performed during the preoperative period; LA dimensions and deformation by strain (systolic wave [LASs]) as well as strain rate (systolic wave [LASRs] and atrial contraction wave [LASRa]) were assessed. RESULTS: Postoperative atrial fibrillation occurred in 38.5% of patients within the first 72 hours after surgery (28.5% of the younger vs. 48.6% of the older group). Baseline and postoperative inflammatory markers as well as total surgical and aortic clamp time were similar between groups. LA function was markedly impaired in subjects with POAF. Age correlated with LASs, LASRs, and LASRa. These associations remained consistent when subjects 75 years or older were considered separately. Both LASs and LASRa for patients with or without POAF, respectively, were significantly impaired in elderly subjects with POAF. Multivariate analysis provided further evidence that both LASs and age are independent predictors for POAF. CONCLUSION: Age-related changes in atrial function preceding atrial dilation are evident only upon LA strain analysis. LA strain impairment is an independent predictor of POAF irrespective of age and may serve as a surrogate marker for biological processes involved in establishing the substrate for POAF.


Assuntos
Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Função do Átrio Esquerdo/fisiologia , Ponte de Artéria Coronária , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/fisiopatologia , Idoso , Estudos de Casos e Controles , Feminino , Átrios do Coração/diagnóstico por imagem , Átrios do Coração/fisiopatologia , Humanos , Masculino , Medição de Risco
8.
J Cell Sci ; 127(Pt 12): 2659-71, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24777478

RESUMO

Cardiomyocyte hypertrophy has been associated with diminished mitochondrial metabolism. Mitochondria are crucial organelles for the production of ATP, and their morphology and function are regulated by the dynamic processes of fusion and fission. The relationship between mitochondrial dynamics and cardiomyocyte hypertrophy is still poorly understood. Here, we show that treatment of cultured neonatal rat cardiomyocytes with the hypertrophic agonist norepinephrine promotes mitochondrial fission (characterized by a decrease in mitochondrial mean volume and an increase in the relative number of mitochondria per cell) and a decrease in mitochondrial function. We demonstrate that norepinephrine acts through α1-adrenergic receptors to increase cytoplasmic Ca(2+), activating calcineurin and promoting migration of the fission protein Drp1 (encoded by Dnml1) to mitochondria. Dominant-negative Drp1 (K38A) not only prevented mitochondrial fission, it also blocked hypertrophic growth of cardiomyocytes in response to norepinephrine. Remarkably, an antisense adenovirus against the fusion protein Mfn2 (AsMfn2) was sufficient to increase mitochondrial fission and stimulate a hypertrophic response without agonist treatment. Collectively, these results demonstrate the importance of mitochondrial dynamics in the development of cardiomyocyte hypertrophy and metabolic remodeling.


Assuntos
Calcineurina/metabolismo , Mitocôndrias Cardíacas/fisiologia , Dinâmica Mitocondrial , Miócitos Cardíacos/fisiologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Cardiomegalia/metabolismo , Células Cultivadas , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases , Hipertrofia/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Norepinefrina/farmacologia , Transporte Proteico , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/metabolismo
9.
Am J Physiol Endocrinol Metab ; 306(1): E1-E13, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24085037

RESUMO

Insulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these ever-changing metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca(2+) uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca(2+) uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest that control of mitochondrial Ca(2+) uptake by mitochondrial morphology is a key event for insulin-induced glucose uptake.


Assuntos
Cálcio/metabolismo , Glucose/metabolismo , Insulina/farmacologia , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Anticorpos/farmacologia , Linhagem Celular , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/fisiologia , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Ratos , Transdução de Sinais/fisiologia
10.
Diabetes ; 63(1): 75-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24009260

RESUMO

Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.


Assuntos
Insulina/farmacologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Células Cultivadas , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
11.
Cardiovasc Res ; 93(2): 320-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22135164

RESUMO

AIMS: Insulin-like growth factor 1 (IGF-1) is known to exert cardioprotective actions. However, it remains unknown if autophagy, a major adaptive response to nutritional stress, contributes to IGF-1-mediated cardioprotection. METHODS AND RESULTS: We subjected cultured neonatal rat cardiomyocytes, as well as live mice, to nutritional stress and assessed cell death and autophagic rates. Nutritional stress induced by serum/glucose deprivation strongly induced autophagy and cell death, and both responses were inhibited by IGF-1. The Akt/mammalian target of rapamycin (mTOR) pathway mediated the effects of IGF-1 upon autophagy. Importantly, starvation also decreased intracellular ATP levels and oxygen consumption leading to AMP-activated protein kinase (AMPK) activation; IGF-1 increased mitochondrial Ca(2+) uptake and mitochondrial respiration in nutrient-starved cells. IGF-1 also rescued ATP levels, reduced AMPK phosphorylation and increased p70(S6K) phosphorylation, which indicates that in addition to Akt/mTOR, IGF-1 inhibits autophagy by the AMPK/mTOR axis. In mice harbouring a liver-specific igf1 deletion, which dramatically reduces IGF-1 plasma levels, AMPK activity and autophagy were increased, and significant heart weight loss was observed in comparison with wild-type starved animals, revealing the importance of IGF-1 in maintaining cardiac adaptability to nutritional insults in vivo. CONCLUSION: Our data support the cardioprotective actions of IGF-1, which, by rescuing the mitochondrial metabolism and the energetic state of cells, reduces cell death and controls the potentially harmful autophagic response to nutritional challenges. IGF-1, therefore, may prove beneficial to mitigate damage induced by excessive nutrient-related stress, including ischaemic disease in multiple tissues.


Assuntos
Autofagia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Camundongos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia
12.
Int J Cardiol ; 150(3): 270-6, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20447702

RESUMO

BACKGROUND: Post-operative atrial fibrillation occurs in 30% of patients after on-pump heart surgery and is associated to elevated inflammatory markers. We have evaluated if the systemic biomarkers of inflammation and endothelial damage, vascular cell adhesion molecule-1 (VCAM-1) and soluble thrombomodulin may help in identifying patients prone to development of post-operative atrial fibrillation. METHODS: One hundred and forty-four patients in sinus rhythm submitted to elective coronary artery bypass surgery. Systemic inflammatory, oxidative stress and endothelial damage markers were measured at baseline and 72 h after surgery. During the procedure, a sample of the right atrial appendage was obtained for histochemistry. Electrocardiogram was monitored for 72 h after surgery for event adjudication. RESULTS: 22% of the patients developed post-operative atrial fibrillation. Baseline systemic inflammatory markers did not differ between patients with or without post-operative atrial fibrillation. However, baseline plasma VCAM-1 and thrombomodulin levels were significantly higher in patients who developed post-operative atrial fibrillation. After adjustment for age, gender, comorbidities and concurrent medication, circulating VCAM-1 remained as an independent predictor for post-operative atrial fibrillation development. No association was observed between systemic plasma VCAM-1 and VCAM-1 tissue expression in the right atrial appendage. CONCLUSIONS: In patients undergoing coronary artery bypass surgery, elevated VCAM-1 levels predict a higher risk for post-operative atrial fibrillation. Plasma VCAM-1 elevation is not related to its expression in the right atria, suggesting that systemic endothelial damage rather than local changes pre-exist in patients who develop the arrhythmia.


Assuntos
Fibrilação Atrial/sangue , Fibrilação Atrial/diagnóstico , Ponte de Artéria Coronária/efeitos adversos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Molécula 1 de Adesão de Célula Vascular/sangue , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/etiologia , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA