Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cancers (Basel) ; 14(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884568

RESUMO

Sarcomas are a heterogeneous group of tumors in which the role of ERK5 is poorly studied. To clarify the role of this MAPK in sarcomatous pathology, we used a murine 3-methyl-cholanthrene (3MC)-induced sarcoma model. Our data show that 3MC induces pleomorphic sarcomas with muscle differentiation, showing an increased expression of ERK5. Indeed, this upregulation was also observed in human sarcomas of muscular origin, such as leiomyosarcoma or rhabdomyosarcoma. Moreover, in cell lines derived from these 3MC-induced tumors, abrogation of Mapk7 expression by using specific shRNAs decreased in vitro growth and colony-forming capacity and led to a marked loss of tumor growth in vivo. In fact, transcriptomic profiling in ERK5 abrogated cell lines by RNAseq showed a deregulated gene expression pattern for key biological processes such as angiogenesis, migration, motility, etc., correlating with a better prognostic in human pathology. Finally, among the various differentially expressed genes, Klf2 is a key mediator of the biological effects of ERK5 as indicated by its specific interference, demonstrating that the ERK5-KLF2 axis is an important determinant of sarcoma biology that should be further studied in human pathology.

2.
BMC Bioinformatics ; 23(1): 204, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641902

RESUMO

Molecular gene signatures are useful tools to characterize the physiological state of cell populations, but most have developed under a narrow range of conditions and cell types and are often restricted to a set of gene identities. Focusing on the transcriptional response to hypoxia, we aimed to generate widely applicable classifiers sourced from the results of a meta-analysis of 69 differential expression datasets which included 425 individual RNA-seq experiments from 33 different human cell types exposed to different degrees of hypoxia (0.1-5%[Formula: see text]) for 2-48 h. The resulting decision trees include both gene identities and quantitative boundaries, allowing for easy classification of individual samples without control or normoxic reference. Each tree is composed of 3-5 genes mostly drawn from a small set of just 8 genes (EGLN1, MIR210HG, NDRG1, ANKRD37, TCAF2, PFKFB3, BHLHE40, and MAFF). In spite of their simplicity, these classifiers achieve over 95% accuracy in cross validation and over 80% accuracy when applied to additional challenging datasets. Our results indicate that the classifiers are able to identify hypoxic tumor samples from bulk RNAseq and hypoxic regions within tumor from spatially resolved transcriptomics datasets. Moreover, application of the classifiers to histological sections from normal tissues suggest the presence of a hypoxic gene expression pattern in the kidney cortex not observed in other normoxic organs. Finally, tree classifiers described herein outperform traditional hypoxic gene signatures when compared against a wide range of datasets. This work describes a set of hypoxic gene signatures, structured as simple decision tress, that identify hypoxic samples and regions with high accuracy and can be applied to a broad variety of gene expression datasets and formats.


Assuntos
Hipóxia , Neoplasias , Transcriptoma , Genes Reguladores , Humanos , Hipóxia/genética , Neoplasias/genética
3.
Cancers (Basel) ; 12(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824266

RESUMO

Colon and rectal tumors, often referred to as colorectal cancer, show different gene expression patterns in studies that analyze whole tissue biopsies containing a mix of tumor and non-tumor cells. To better characterize colon and rectal tumors, we investigated the gene expression profile of organoids generated from endoscopic biopsies of rectal tumors and adjacent normal colon and rectum mucosa from therapy-naive rectal cancer patients. We also studied the effect of vitamin D on these organoid types. Gene profiling was performed by RNA-sequencing. Organoids from a normal colon and rectum had a shared gene expression profile that profoundly differed from that of rectal tumor organoids. We identified a group of genes of the biosynthetic machinery as rectal tumor organoid-specific, including those encoding the RNA polymerase II subunits POLR2H and POLR2J. The active vitamin D metabolite 1α,25-dihydroxyvitamin D3/calcitriol upregulated stemness-related genes (LGR5, LRIG1, SMOC2, and MSI1) in normal rectum organoids, while it downregulated differentiation marker genes (TFF2 and MUC2). Normal colon and rectum organoids share similar gene expression patterns and respond similarly to calcitriol. Rectal tumor organoids display distinct and heterogeneous gene expression profiles, with differences with respect to those of colon tumor organoids, and respond differently to calcitriol than normal rectum organoids.

4.
FEBS J ; 287(1): 53-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306552

RESUMO

Intestine is a major target of vitamin D and several studies indicate an association between vitamin D deficiency and inflammatory bowel diseases (IBD), but also increased colorectal cancer (CRC) risk and mortality. However, the putative effects of 1α,25-dihydroxyvitamin D3 (calcitriol), the active vitamin D metabolite, on human colonic stem cells are unknown. Here we show by immunohistochemistry and RNAscope in situ hybridization that vitamin D receptor (VDR) is unexpectedly expressed in LGR5+ colon stem cells in human tissue and in normal and tumor organoid cultures generated from patient biopsies. Interestingly, normal and tumor organoids respond differentially to calcitriol with profound and contrasting changes in their transcriptomic profiles. In normal organoids, calcitriol upregulates stemness-related genes, such as LGR5, SMOC2, LRIG1, MSI1, PTK7, and MEX3A, and inhibits cell proliferation. In contrast, in tumor organoids calcitriol has little effect on stemness-related genes while it induces a differentiated phenotype, and variably reduces cell proliferation. Concordantly, electron microscopy showed that calcitriol does not affect the blastic undifferentiated cell phenotype in normal organoids but it induces a series of differentiated features in tumor organoids. Our results constitute the first demonstration of a regulatory role of vitamin D on human colon stem cells, indicating a homeostatic effect on colon epithelium with relevant implications in IBD and CRC.


Assuntos
Calcitriol/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Colo/citologia , Neoplasias do Colo/patologia , Organoides/citologia , Receptores de Calcitriol/metabolismo , Células-Tronco/citologia , Apoptose , Proliferação de Células , Células Cultivadas , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Receptores de Calcitriol/deficiência , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 39(7): 1402-1418, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31242036

RESUMO

Objective- Pathological neovascularization is crucial for progression and morbidity of serious diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. While mechanisms of ongoing pathological neovascularization have been extensively studied, the initiating pathological vascular remodeling (PVR) events, which precede neovascularization remains poorly understood. Here, we identify novel molecular and cellular mechanisms of preneovascular PVR, by using the adult choriocapillaris as a model. Approach and Results- Using hypoxia or forced overexpression of VEGF (vascular endothelial growth factor) in the subretinal space to induce PVR in zebrafish and rats respectively, and by analyzing choriocapillaris membranes adjacent to choroidal neovascular lesions from age-related macular degeneration patients, we show that the choriocapillaris undergo robust induction of vascular intussusception and permeability at preneovascular stages of PVR. This PVR response included endothelial cell proliferation, formation of endothelial luminal processes, extensive vesiculation and thickening of the endothelium, degradation of collagen fibers, and splitting of existing extravascular columns. RNA-sequencing established a role for endothelial tight junction disruption, cytoskeletal remodeling, vesicle- and cilium biogenesis in this process. Mechanistically, using genetic gain- and loss-of-function zebrafish models and analysis of primary human choriocapillaris endothelial cells, we determined that HIF (hypoxia-induced factor)-1α-VEGF-A-VEGFR2 signaling was important for hypoxia-induced PVR. Conclusions- Our findings reveal that PVR involving intussusception and splitting of extravascular columns, endothelial proliferation, vesiculation, fenestration, and thickening is induced before neovascularization, suggesting that identifying and targeting these processes may prevent development of advanced neovascular disease in the future. Visual Overview- An online visual overview is available for this article.


Assuntos
Neovascularização Patológica/etiologia , Remodelação Vascular/fisiologia , Adulto , Animais , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Degeneração Macular/etiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Peixe-Zebra
6.
Sci Rep ; 9(1): 8085, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147591

RESUMO

The Wnt/ß-catenin signalling pathway is essential for intestinal epithelium homeostasis, but its aberrant activation is a hallmark of colorectal cancer (CRC). Several studies indicate that the bioactive vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits proliferation and promotes epithelial differentiation of colon carcinoma cells in part through antagonism of the Wnt/ß-catenin pathway. It is now accepted that stromal fibroblasts are crucial in healthy and pathologic intestine: pericryptal myofibroblasts are constituents of the stem cell niche and cancer-associated fibroblasts (CAFs) contribute to CRC progression. However, studies on the combined action of 1,25(OH)2D3 and Wnt factors in colon fibroblasts are lacking. Here we show by global transcriptomic studies that 1,25(OH)2D3 and Wnt3A have profound, additive, partially overlapping effects on the gene expression profile of CCD-18Co human colon myofibroblasts. Moreover, 1,25(OH)2D3 and Wnt3A inhibit CCD-18Co cell proliferation and migration, while 1,25(OH)2D3 reduces, but Wnt3A increases, their capacity to contract collagen gels (a marker of fibroblast activation). These data were largely confirmed in patient-derived primary colon normal fibroblasts and CAFs, and in fibroblasts from other origins. Our results indicate that 1,25(OH)2D3 and Wnt3A are strong regulators of colon fibroblast biology and contribute to a better knowledge of intestinal homeostasis and stromal fibroblast action in CRC.


Assuntos
Calcitriol/metabolismo , Fibroblastos Associados a Câncer/patologia , Transformação Celular Neoplásica/genética , Regulação da Expressão Gênica , Miofibroblastos/patologia , Proteína Wnt3A/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Colo/citologia , Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fibrose , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Miofibroblastos/metabolismo , Cultura Primária de Células , RNA-Seq , Proteínas Recombinantes/metabolismo
7.
Int J Cancer ; 142(4): 792-804, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29044515

RESUMO

Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/ß-catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD-18Co cells. A set of genes encoding inhibitors of the Wnt/ß-catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin-2 is a novel direct transcriptional target of Wnt/ß-catenin in normal and colon cancer-associated fibroblasts. PKP2 is induced by ß-catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin-2 antagonizes Wnt/ß-catenin transcriptional activity in HEK-293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/ß-catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin-2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells.


Assuntos
Fibroblastos Associados a Câncer/fisiologia , Neoplasias Colorretais/genética , Placofilinas/genética , Proteína Wnt3A/genética , beta Catenina/genética , Sítios de Ligação , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dactinomicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Regiões Promotoras Genéticas , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo
8.
Nucleic Acids Res ; 44(19): 9315-9330, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27625398

RESUMO

A wide range of diseases course with an unbalance between the consumption of oxygen by tissues and its supply. This situation triggers a transcriptional response, mediated by the hypoxia inducible factors (HIFs), that aims to restore oxygen homeostasis. Little is known about the inter-individual variation in this response and its role in the progression of disease. Herein, we sought to identify common genetic variants mapping to hypoxia response elements (HREs) and characterize their effect on transcription. To this end, we constructed a list of genome-wide HIF-binding regions from publicly available experimental datasets and studied the genetic variability in these regions by targeted re-sequencing of genomic samples from 96 chronic obstructive pulmonary disease and 144 obstructive sleep apnea patients. This study identified 14 frequent variants disrupting potential HREs. The analysis of the genomic regions containing these variants by means of reporter assays revealed that variants rs1009329, rs6593210 and rs150921338 impaired the transcriptional response to hypoxia. Finally, using genome editing we confirmed the functional role of rs6593210 in the transcriptional regulation of EGFR. In summary, we found that inter-individual variability in non-coding regions affect the response to hypoxia and could potentially impact on the progression of pulmonary diseases.


Assuntos
Regulação da Expressão Gênica , Variação Genética , Hipóxia/genética , Doenças Respiratórias/genética , Transcrição Gênica , Regiões não Traduzidas , Linhagem Celular , Análise por Conglomerados , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes erbB-1 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipóxia/metabolismo , Masculino , Motivos de Nucleotídeos , Fenótipo , Fosfoglicerato Quinase/genética , Polimorfismo Genético , Regiões Promotoras Genéticas , Doenças Respiratórias/metabolismo , Doenças Respiratórias/fisiopatologia , Transcriptoma
9.
Oncoscience ; 2(10): 795-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682249
10.
Neoplasia ; 16(6): 529-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25030625

RESUMO

Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor superfamily, has potent anti-metastatic effects in cutaneous melanoma through its direct actions on endothelial and melanoma cells. Here we show that PEDF expression positively correlates with microphthalmia-associated transcription factor (MITF) in melanoma cell lines and human samples. High PEDF and MITF expression is characteristic of low aggressive melanomas classified according to molecular and pathological criteria, whereas both factors are decreased in senescent melanocytes and naevi. Importantly, MITF silencing down-regulates PEDF expression in melanoma cell lines and primary melanocytes, suggesting that the correlation in the expression reflects a causal relationship. In agreement, analysis of Chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) data sets revealed three MITF binding regions within the first intron of SERPINF1, and reporter assays demonstrated that the binding of MITF to these regions is sufficient to drive transcription. Finally, we demonstrate that exogenous PEDF expression efficiently halts in vitro migration and invasion, as well as in vivo dissemination of melanoma cells induced by MITF silencing. In summary, these results identify PEDF as a novel transcriptional target of MITF and support a relevant functional role for the MITF-PEDF axis in the biology of melanoma.


Assuntos
Proteínas do Olho/genética , Melanoma/genética , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fatores de Crescimento Neural/genética , Serpinas/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Senescência Celular/genética , Progressão da Doença , Epistasia Genética , Proteínas do Olho/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Melanócitos/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Metástase Neoplásica , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo
11.
Neoplasia ; 15(6): 649-59, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730213

RESUMO

Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Adulto , Idoso , Animais , Sequência de Bases , Células COS , Carcinoma de Células Renais/patologia , Linhagem Celular , Movimento Celular , Chlorocebus aethiops , Feminino , Técnicas de Silenciamento de Genes , Humanos , Hidroxilação , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Proteína Quinase 7 Ativada por Mitógeno/genética , Dados de Sequência Molecular , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética
12.
PLoS One ; 7(3): e33258, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22432008

RESUMO

Acute tubular necrosis (ATN) caused by ischemia/reperfusion (I/R) during renal transplantation delays allograft function. Identification of factors that mediate protection and/or epithelium recovery could help to improve graft outcome. We studied the expression, regulation and role of hypoxia inducible factor 1-alpha (HIF-1 α), using in vitro and in vivo experimental models of I/R as well as human post-transplant renal biopsies. We found that HIF-1 α is stabilized in proximal tubule cells during ischemia and unexpectedly in late reperfusion, when oxygen tension is normal. Both inductions lead to gene expression in vitro and in vivo. In vitro interference of HIF-1 α promoted cell death and in vivo interference exacerbated tissue damage and renal dysfunction. In pos-transplant human biopsies, HIF-1 α was expressed only in proximal tubules which exhibited normal renal structure with a significant negative correlation with ATN grade. In summary, using experimental models and human biopsies, we identified a novel HIF-1 α induction during reperfusion with a potential critical role in renal transplant.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Adulto , Idoso , Animais , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Transplante de Rim , Necrose Tubular Aguda/complicações , Necrose Tubular Aguda/patologia , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Oxigênio/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/genética , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transplante Homólogo , Adulto Jovem
13.
PLoS One ; 7(3): e32989, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457728

RESUMO

Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.


Assuntos
Autofagia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Hipóxia Celular , Proteínas do Olho/metabolismo , Melanoma/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Regulação para Baixo , Humanos , Melanoma/patologia , Metástase Neoplásica , Células Tumorais Cultivadas , Regiões não Traduzidas
14.
BMC Cell Biol ; 9: 18, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18402654

RESUMO

BACKGROUND: Several human pathologies, including neoplasia and ischemic cardiovascular diseases, course with an unbalance between oxygen supply and demand (hypoxia). Cells within hypoxic regions respond with the induction of a specific genetic program, under the control of the Hypoxia Inducible Factor (HIF), that mediates their adaptation to the lack of oxygen. The activity of HIF is mainly regulated by the EGL-nine homolog (EGLN) enzymes that hydroxylate the alpha subunit of this transcription factor in an oxygen-dependent reaction. Hydroxylated HIF is then recognized and ubiquitinilated by the product of the tumor suppressor gene, pVHL, leading to its proteosomal degradation. Under hypoxia, the hydroxylation of HIF by the EGLNs is compromised due to the lack of oxygen, which is a reaction cosubstrate. Thus, HIF escapes degradation and drives the transcription of its target genes. Since the progression of the aforementioned pathologies might be influenced by activation of HIF-target genes, development of small molecules with the ability to interfere with the HIF-regulatory machinery is of great interest. RESULTS: Herein we describe a yeast three-hybrid system that reconstitutes mammalian HIF regulation by the EGLNs and VHL. In this system, yeast growth, under specific nutrient restrictions, is driven by the interaction between the beta domain of VHL and a hydroxyproline-containing HIFalpha peptide. In turn, this interaction is strictly dependent on EGLN activity that hydroxylates the HIFalpha peptide. Importantly, this system accurately preserves the specificity of the hydroxylation reaction toward specific substrates. We propose that this system, in combination with a matched control, can be used as a simple and inexpensive assay to identify molecules that specifically modulate EGLN activity. As a proof of principle we show that two known EGLN inhibitors, dimethyloxaloylglycine (DMOG) and 6-chlor-3-hydroxychinolin-2-carbonic acid-N-carboxymethylamide (S956711), have a profound and specific effect on the yeast HIF/EGLN/VHL system. CONCLUSION: The system described in this work accurately reconstitutes HIF regulation while preserving EGLN substrate specificity. Thus, it is a valuable tool to study HIF regulation, and particularly EGLN biochemistry, in a cellular context. In addition, we demonstrate that this system can be used to identify specific inhibitors of the EGLN enzymes.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido/normas , Animais , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica/fisiologia , Hidroxilação/efeitos dos fármacos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Oxirredução , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
15.
Cell Signal ; 19(10): 2098-105, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17658243

RESUMO

15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) is a peroxisome-activated proliferator receptor-gamma (PPARgamma) agonist which contains an alpha,beta-unsaturated electrophilic ketone involved in nucleophilic addition reactions to thiols. Here we studied its effect on hypoxia-inducible factor-1alpha (HIF-1alpha) in human proximal tubular cells HK-2. 15d-PGJ(2) induced stabilization of HIF-1alpha protein, without affecting HIF-1alpha mRNA levels or proteasome activity, leading to its nuclear accumulation and activation of HIF-induced transcription. Accumulation of HIF-1alpha was unaffected by selective PPARgamma blockade nor mimicked by the PPARgamma agonists ciglitazone and 9,10-dihydro-15d-PGJ(2). N-acetylcysteine, reduced glutathione (GSH) or dithiothreitol (i.e. agents that act as thiol reducing agents and/or increase the GSH content), but not reactive oxygen species (ROS) scavengers, prevented 15d-PGJ(2)-induced HIF-1alpha accumulation whereas the inhibitor of GSH synthesis buthionine sulfoximine cooperated with 15d-PGJ(2) to accumulate HIF-1alpha. Finally, HIF-1alpha expression was increased by the electrophilic alpha,beta-unsaturated compounds acrolein and PGA(2), but not by 9,10-dihydro-15d-PGJ(2), which lacks the electrophilic cyclopentenone moiety. Taken together, these results point out to a new mechanism to increase pharmacologically the cell levels of HIF-1alpha through the electrophilic reaction of alpha,beta-unsaturated ketones with thiol groups.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Túbulos Renais Proximais/metabolismo , Prostaglandina D2/análogos & derivados , Antioxidantes/farmacologia , Linhagem Celular , Núcleo Celular/metabolismo , Glutationa/antagonistas & inibidores , Glutationa/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/metabolismo , Prostaglandina D2/antagonistas & inibidores , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Inibidores de Proteassoma , Espécies Reativas de Oxigênio/metabolismo , Substâncias Redutoras/farmacologia , Compostos de Sulfidrila/farmacologia , Transcrição Gênica
16.
Cancer Res ; 63(20): 6877-84, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14583486

RESUMO

Mutations in the von Hippel-Lindau (VHL) tumor suppressor gene are responsible for a hereditary cancer syndrome characterized by high susceptibility to hemangioblastomas of the retina and central nervous system, pheochromocytomas, and renal cell carcinomas. In agreement with its role as a tumor suppressor, the vast majority of spontaneous clear cell carcinomas of the kidney present loss of heterozygosity at the VHL locus. Recently, it has been shown that VHL works as the substrate recognition component of an E3 ubiquitination complex that targets the hypoxia-inducible factor (HIF) for proteosomal degradation. Under normal oxygen tension, the half-life of HIF transcription factors is extremely short because of its high degradation rate by the proteasome, resulting in undetectable HIF activity in normal cells. However, in VHL-deficient tumor cells, the HIF transcriptional pathway is constitutively activated because of impaired ubiquitination of this transcription factor. To target VHL-deficient tumors, we have exploited this feature to develop a conditionally replicative adenovirus (Ad9xHRE1A), the replication of which is HIF dependent. In this new oncolytic adenovirus, the expression of the E1A gene is controlled by an optimized minimal promoter containing HIF recognition elements. Here, we show that the induction of the E1A gene, as well as the viral replication and cytolytic effect of Ad9xHRE1A, are dependent on HIF activity. As a consequence, this virus efficiently kills VHL-deficient cells both in vitro and in vivo, as well as cells growing under hypoxic conditions. These data suggest that Ad9xHRE1A could be used as a highly specific therapy for VHL-deficient cancers and probably many other tumors that show extensive hypoxic areas or increased HIF activity by genetic alterations other than VHL loss.


Assuntos
Adenovírus Humanos/fisiologia , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/virologia , Neoplasias Renais/terapia , Neoplasias Renais/virologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/deficiência , Ubiquitina-Proteína Ligases/deficiência , Proteínas E1A de Adenovirus/biossíntese , Proteínas E1A de Adenovirus/genética , Adenovírus Humanos/genética , Sequência de Bases , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Replicação Viral , Proteína Supressora de Tumor Von Hippel-Lindau
17.
J Biol Chem ; 278(49): 48690-5, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14506252

RESUMO

Most of the genes induced by hypoxia are regulated by a family of transcription factors termed hypoxia-inducible factors (HIF). Under normoxic conditions, HIFalpha proteins are very unstable due to hydroxylation by a recently described family of proline hydroxylases termed EGL-Nine homologs (EGLN). Upon hydroxylation, HIFalpha is recognized by the product of the tumor suppressor vhl and targeted for proteosomal degradation. Since EGLNs require oxygen to catalyze HIF hydroxylation, this reaction does not efficiently occur under low oxygen tension. Thus, under hypoxia, HIFalpha escapes from degradation and transcribes target genes. The mRNA levels of two of the three EGLNs described to date are induced by hypoxia, suggesting that they might be novel HIF target genes; however, no proof for this hypothesis has been reported. Here we show that the induction of EGLN1 and -3 by hypoxia is found in a wide range of cell types. The basal levels of EGLN3 are always well below those of EGLN1 and EGLN2, and its induction by hypoxia is larger than that found for EGLN1. The inhibitor of transcription, actinomycin D, prevents the increase of EGLN3 mRNA induced by hypoxia, indicating that it is due to enhanced gene expression. Interestingly, EGLN1 and EGLN3 mRNAs were also triggered by EGLN inhibitors, suggesting the involvement of HIFalpha in the control of its transcription. In agreement with this possibility, pVHL-deficient cell lines, which present high HIF activity under normoxia, also showed dramatically increased normoxic levels of EGLN3. Moreover, the overexpression of an oxygen-insensitive mutant form of HIFalpha resulted in increased normoxic levels of EGLN3 mRNA. Finally, hypoxic induction of EGLNs was not observed in cells lacking functional HIFalpha.


Assuntos
Regulação da Expressão Gênica/fisiologia , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Transcrição Gênica/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Linhagem Celular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor Von Hippel-Lindau
18.
J Biol Chem ; 278(34): 31895-901, 2003 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-12805361

RESUMO

Cellular responses to low oxygen tension are mediated, at least in part, by the activation of the hypoxia-inducible factors (HIFs). In the presence of oxygen, specific HIF residues become hydroxylated by the action of a recently described group of dioxygenases. These post-translational modifications target HIF for proteosomal degradation and prevent its transcriptional activity. Despite these detailed studies, little is known about the regulation of HIF by stimuli other than hypoxia. Here we report that, in rat pheochromocytoma PC12 cells, nerve growth factor (NGF) stimulation results in a decrease of both basal and hypoxia-induced levels of HIF-2 alpha protein. NGF treatment did not increase HIF-hydroxylase gene expression or activity, and the reduction of the HIF-2 alpha protein level upon stimulation was observed even in the presence of HIF-hydroxylase inhibitors such as deferoxamine or dimethyloxoglutarate. Thus, in contrast to the response to hypoxia, the effect of NGF on HIF-2 alpha protein levels is not mediated by the HIF hydroxilases. Quantitative real time (RT)-PCR showed that NGF stimulation results in a decrease of the HIF-2 alpha mRNA level similar to that found at the protein level. Interestingly, NGF effect was specific for HIF-2 alpha mRNA because it did not affect HIF-1 alpha mRNA levels. NGF treatment reduced HIF-2 alpha mRNA levels even in the presence of actinomycin D, suggesting an effect on mRNA stability. Finally, the effect of NGF on HIF2 alpha correlates with reduction of both basal and hypoxia-induced vascular endothelial growth factor mRNA levels. Reporter assays suggest that the reduced expression of hypoxia-inducible genes upon NGF treatment is related, at least in part, to the reduction of HIF-2 alpha protein. Hence, in PC12 cells the level of HIF-2 alpha protein and its effect on gene expression can be down-regulated by stimuli other than oxygen.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Transativadores/fisiologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sondas de DNA , Células PC12 , Pró-Colágeno-Prolina Dioxigenase/genética , RNA Mensageiro/genética , Ratos , Transativadores/genética
19.
Int J Oncol ; 21(3): 477-85, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12168089

RESUMO

Transformation by ras oncogenes induces the deregulation of intracellular signalling cascades that are critical elements in cell growth control. Ras proteins are molecular switches with the ability to interact and activate several effector molecules. Among those, Raf-1 kinase, PI3K and Ral-GDS are the best characterised. Raf activates the mitogenic MEK/ERK kinases pathway, while PI3K regulates the PKB/Akt cascade, involved in the control of proliferation, metabolism and apoptotic responses. Finally, Ral-GDS belongs to a family of guanine nucleotide exchange factors that activate Ral GTPases. While Raf and PI3K have emerged as critical elements in regulating cell growth and apoptosis, little is known about the role of the Ral-GDS family. We have previously reported that Ras proteins are critical elements in the regulation of phospholipase D (PLD), a proposed target for the Ral-GDS/RalA pathway. Physiological regulation of PLD by growth factors requires the simultaneous activation of the endogenous, wild-type Ras proteins, and a PKC-dependent mechanism. Transformation by ras oncogenes induces drastic alterations in PLD activity and the usual response to external stimuli, through a PKC-independent mechanism. Here we provide further evidence on the mechanisms by which oncogenic Ras proteins induces the deregulation of PLD and here we try to identify the specific effectors involved. A complex system for PLD regulation is unravelled which implies the existence of two positive regulatory pathways, mediated by Ral-GDS and PI3K, and two negative feedback mechanisms mediated by Raf and Ral-GDS. These results strongly support participation of PLD in Ras-mediated signalling. Furthermore, we provide evidence that oncogenic Ras proteins constitutively activate PLD by mechanisms different to those used by normal Ras proteins.


Assuntos
Transformação Celular Neoplásica/metabolismo , Dibutirato de 12,13-Forbol/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosfolipase D/metabolismo , Proteínas Proto-Oncogênicas c-raf/fisiologia , Fator ral de Troca do Nucleotídeo Guanina/fisiologia , Proteínas ras/fisiologia , Células 3T3 , Animais , Transformação Celular Neoplásica/genética , Células Cultivadas , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/enzimologia , Fibroblastos/fisiologia , Camundongos , Mutação , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Transfecção , Proteínas ras/genética
20.
J Biol Chem ; 277(16): 13508-17, 2002 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-11815624

RESUMO

Hypoxia-inducible factors (HIF) belong to an evolutionary conserved family of transcription factors, the activity of which is tightly regulated by oxygen levels. We have recently demonstrated that hypoxia activates the phosphoinositide 3-kinase (PI3K)/Akt pathway in some cell types, and other works have suggested that this pathway is involved in the activation of HIF. In the present work we studied the role of this pathway in the induction of HIF by hypoxia. Under hypoxic conditions the PI3K/Akt pathway was activated in some (PC12 and HeLa) but not all cell types (HepG2) tested, whereas the HIF protein was induced by hypoxia in all cases. Kinetics analysis showed that, when observed, the activation of PI3K/Akt occurred after HIF induction. In addition, the chemical inhibition of PI3K had no significant effect on the induction of the HIF protein or its transcriptional activity but prevented Akt activation. Accordingly, transient overexpression of a dominant negative form of the regulatory subunit of PI3K in HEK293T cells did not interfere with the induction of the HIF-alpha protein by hypoxia or affect HIF-mediated transcription in any of the cell types tested. Moreover, forced activation of the PI3K/Akt pathway did not affect the transcriptional activity of HIF under normoxic or hypoxic conditions. Thus, our data suggest that the activation of PI3K/Akt by hypoxia is cell type-specific and, when observed, lies downstream of HIF activation or in a parallel pathway. Furthermore, the activity of the PI3K/Akt is not sufficient for the activation of HIF nor is it essential for its induction by hypoxia.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipóxia , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Androstadienos/farmacologia , Animais , Western Blotting , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Genes Dominantes , Genes Reporter , Células HeLa , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Cinética , Células PC12 , Plasmídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA