Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806330

RESUMO

Excessive fetal growth is associated with DNA methylation alterations in human hematopoietic stem and progenitor cells (HSPC), but their functional impact remains elusive. We implemented an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, and in vitro analyses to functionally link DNA methylation changes to putative alterations of HSPC functions. We showed in hematopoietic stem cells (HSC) from large for gestational age neonates that both DNA hypermethylation and chromatin rearrangements target a specific network of transcription factors known to sustain stem cell quiescence. In parallel, we found a decreased expression of key genes regulating HSC differentiation including EGR1, KLF2, SOCS3, and JUNB. Our functional analyses showed that this epigenetic programming was associated with a decreased ability for HSCs to remain quiescent. Taken together, our multimodal approach using single-cell (epi)genomics showed that human fetal overgrowth affects hematopoietic stem cells' quiescence signaling via epigenetic programming.


Assuntos
Diabetes Gestacional , Transcriptoma , Diabetes Gestacional/metabolismo , Epigênese Genética , Epigenômica , Feminino , Macrossomia Fetal/genética , Idade Gestacional , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Recém-Nascido , Gravidez
2.
Clin Epigenetics ; 12(1): 78, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493484

RESUMO

BACKGROUND: Birthweight marks an important milestone of health across the lifespan, including cardiometabolic disease risk in later life. The placenta, a transient organ at the maternal-fetal interface, regulates fetal growth. Identifying genetic loci where DNA methylation in placenta is associated with birthweight can unravel genomic pathways that are dysregulated in aberrant fetal growth and cardiometabolic diseases in later life. RESULTS: We performed placental epigenome-wide association study (EWAS) of birthweight in an ethnic diverse cohort of pregnant women (n = 301). Methylation at 15 cytosine-(phosphate)-guanine sites (CpGs) was associated with birthweight (false discovery rate (FDR) < 0.05). Methylation at four (26.7%) CpG sites was associated with placental transcript levels of 15 genes (FDR < 0.05), including genes known to be associated with adult lipid traits, inflammation and oxidative stress. Increased methylation at cg06155341 was associated with higher birthweight and lower FOSL1 expression, and lower FOSL1 expression was correlated with higher birthweight. Given the role of the FOSL1 transcription factor in regulating developmental processes at the maternal-fetal interface, epigenetic mechanisms at this locus may regulate fetal development. We demonstrated trans-tissue portability of methylation at four genes (MLLT1, PDE9A, ASAP2, and SLC20A2) implicated in birthweight by a previous study in cord blood. We also found that methylation changes known to be related to maternal underweight, preeclampsia and adult type 2 diabetes were associated with lower birthweight in placenta. CONCLUSION: We identified novel placental DNA methylation changes associated with birthweight. Placental epigenetic mechanisms may underlie dysregulated fetal development and early origins of adult cardiometabolic diseases. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT00912132.


Assuntos
Peso ao Nascer/genética , Metilação de DNA/genética , Recém-Nascido de Baixo Peso/metabolismo , Placenta/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , Adulto , Fatores de Risco Cardiometabólico , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/genética , Epigênese Genética/genética , Feminino , Sangue Fetal/metabolismo , Desenvolvimento Fetal/genética , Proteínas Ativadoras de GTPase/genética , Expressão Gênica/genética , Humanos , Recém-Nascido , Troca Materno-Fetal/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Pré-Eclâmpsia/genética , Gravidez/etnologia , Gravidez/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Fatores de Transcrição/genética
3.
Nat Commun ; 9(1): 2394, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921922

RESUMO

Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes. Here we show that L2-Cmu preferentially improves female healthspan and increases median lifespan by 9% (P = 0.03) in females, along with a reduction in neoplasms and inflammation (P ≤ 0.05). Thus, consistent with other models, targeting IGF-1R signaling appears to be most beneficial to females. Importantly, these effects could be achieved at advanced ages, suggesting that IGF-1R mAbs could represent a promising therapeutic candidate to delay aging.


Assuntos
Anticorpos Monoclonais/farmacologia , Longevidade/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/prevenção & controle , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Fatores Sexuais , Carga Tumoral/efeitos dos fármacos
4.
Stem Cells Dev ; 27(10): 683-691, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29598691

RESUMO

Hyperglycemia and other adverse exposures early in life that reprogram stem cells may lead to long-lasting phenotypic influences over the lifetime of an individual. Hyperglycemia and oxidative stress cause DNA damage when they exceed the protective capabilities of the cell, in turn affecting cellular function. DNA damage in response to hyperglycemia and oxidative stress was studied in human umbilical cord mesenchymal stem cells (hUC-MSCs) from large-for-gestational-age (LGA) infants of mothers with gestational diabetes mellitus (LGA-GDM) and control subjects. We tested the response of these cells to hyperglycemia and oxidative stress, measuring reactive oxygen species (ROS) levels and antioxidant enzyme activities. We find that hUC-MSCs from LGA-GDM infants have increased DNA damage when exposed to oxidative stress. With the addition of hyperglycemic conditions, these cells have an increase in ROS and a decrease in antioxidant glutathione peroxidase (GPx) activity, indicating a mechanism for the increased ROS and DNA damage. This study demonstrates that a memory of in utero hyperglycemia, mediated through downregulation of GPx activity, leads to an increased susceptibility to oxidative stress. The alteration of GPx function in self-renewing stem cells, can mediate the effect of intrauterine hyperglycemia to be propagated into adulthood and contribute to disease susceptibility.


Assuntos
Antioxidantes/metabolismo , Hiperglicemia/patologia , Estresse Oxidativo/fisiologia , Útero/patologia , Células Cultivadas , Dano ao DNA/fisiologia , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Feminino , Glutationa/metabolismo , Humanos , Hiperglicemia/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Oxirredução , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Cordão Umbilical/metabolismo , Cordão Umbilical/patologia , Útero/metabolismo
5.
Endocr Relat Cancer ; 24(6): 253-265, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351943

RESUMO

Obesity is a major risk factor for colorectal cancer and can accelerate Lgr5+ intestinal stem cell (ISC)-derived tumorigenesis after the inactivation of Apc However, whether non-canonical pathways involving PI3K-Akt signaling in ISCs can lead to tumor formation, and if this can be further exacerbated by obesity is unknown. Despite the synergy between Pten and Apc inactivation in epithelial cells on intestinal tumor formation, their combined role in Lgr5+-ISCs, which are the most rapidly dividing ISC population in the intestine, is unknown. Lgr5+-GFP mice were provided low-fat diet (LFD) or high-fat diet (HFD) for 8 months, and the transcriptome was evaluated in Lgr5+-ISCs. For tumor studies, Lgr5+-GFP and Lgr5+-GFP-Ptenflox/flox mice were tamoxifen treated to inactivate Pten in ISCs and provided LFD or HFD until 14-15 months of age. Finally, various combinations of Lgr5+-ISC-specific, Apc- and Pten-deleted mice were generated and evaluated for histopathology and survival. HFD did not overtly alter Akt signaling in ISCs, but did increase other metabolic pathways. Pten deficiency, but not HFD, increased BrdU-positive cells in the small intestine (P < 0.05). However, combining Pten and Apc deficiency synergistically increased proliferative markers, tumor pathology and mortality, in a dose-dependent fashion (P < 0.05). In summary, we show that HFD alone fails to drive Akt signaling in ISCs and that Pten deficiency is dispensable as a tumor suppressor in Lgr5+-ISCs. However, combining Pten and Apc deficiency in ISCs synergistically increases proliferation, tumor formation and mortality. Thus, aberrant Wnt/ß-catenin, rather than PI3K-Akt signaling, is requisite for obesity to drive Lgr5+ ISC-derived tumorigenesis.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Carcinogênese/genética , Obesidade/genética , PTEN Fosfo-Hidrolase/genética , Células-Tronco/patologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Trato Gastrointestinal/citologia , Trato Gastrointestinal/patologia , Glucose/análise , Proteínas de Fluorescência Verde/genética , Insulina/sangue , Masculino , Camundongos Transgênicos , Obesidade/sangue , PTEN Fosfo-Hidrolase/deficiência , Receptores Acoplados a Proteínas G/genética
6.
Nat Commun ; 5: 5195, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25327398

RESUMO

The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here we purify human CD34+ haematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate 'poised' enhancers and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure.


Assuntos
Metilação de DNA , Epigenômica , Células-Tronco/citologia , Algoritmos , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatina/química , Mapeamento Cromossômico , Ilhas de CpG , Epigênese Genética , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Histonas/química , Humanos , Leucócitos/citologia , Polimorfismo Genético , Análise de Sequência de DNA
7.
Am J Physiol Endocrinol Metab ; 296(3): E462-72, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19088253

RESUMO

Epidemiological studies suggest that maternal undernutrition predisposes the offspring to development of energy balance metabolic pathologies in adulthood. Using a model of a prenatal maternal 70% food-restricted diet (FR30) in rats, we evaluated peripheral parameters involved in nutritional regulation, as well as the hypothalamic appetite-regulatory system, in nonfasted and 48-h-fasted adult offspring. Despite comparable glycemia in both groups, mild glucose intolerance, with a defect in glucose-induced insulin secretion, was observed in FR30 animals. They also exhibited hyperleptinemia, despite similar visible fat deposits. Using semiquantitative RT-PCR, we observed no basal difference of hypothalamic proopiomelanocortin (POMC) and neuropeptide Y (NPY) gene expression, but a decrease of the OB-Rb and an increase of insulin receptor mRNA levels, in FR30 animals. These animals also exhibited basal hypercorticosteronemia and a blunted increase of corticosterone in fasted compared with control animals. After fasting, FR30 animals showed no marked reduction of POMC mRNA levels or intensity of beta-endorphin-immunoreactive fiber projections. By contrast, NPY gene expression and immunoreactive fiber intensity increased. FR30 rats also displayed subtle alterations of food intake: body weight-related food intake was higher and light-dark phase rhythm and refeeding time course were modified after fasting. At rest, in the morning, hyperinsulinemia and a striking increase in the number of c-Fos-containing cells in the arcuate nucleus were observed. About 30% of the c-Fos-expressing cells were POMC neurons. Our data suggest that maternal undernutrition differently programs the long-term appetite-regulatory system of offspring, especially the response of POMC neurons to energy status and food intake rhythm.


Assuntos
Metabolismo Energético/fisiologia , Transtornos da Nutrição Fetal/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Pró-Opiomelanocortina/metabolismo , Animais , Apetite/fisiologia , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Composição Corporal/fisiologia , Peso Corporal/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Genes fos/fisiologia , Teste de Tolerância a Glucose , Hormônios/sangue , Insulina/sangue , Tamanho da Ninhada de Vivíparos , Masculino , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Gravidez , Pró-Opiomelanocortina/genética , Ratos , Ratos Wistar , Receptor de Insulina/genética , Receptores para Leptina/genética , beta-Endorfina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA