Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cancer Ther ; 23(6): 751-765, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38588408

RESUMO

A majority of patients with cancer receive radiotherapy as part of their treatment regimens whether using external beam therapy or locally-delivered radioisotopes. While often effective, some tumors are inadequately controlled with radiation and radiotherapy has significant short-term and long-term toxicities for cancer survivors. Insights into molecular mechanisms involved in cellular responses to DNA breaks introduced by radiation or other cancer therapies have been gained in recent years and approaches to manipulate these responses to enhance tumor cell killing or reduce normal tissue toxicity are of great interest. Here, we report the identification and initial characterization of XRD-0394, a potent and specific dual inhibitor of two DNA damage response kinases, ATM and DNA-PKcs. This orally bioavailable molecule demonstrates significantly enhanced tumor cell kill in the setting of therapeutic ionizing irradiation in vitro and in vivo. XRD-0394 also potentiates the effectiveness of topoisomerase I inhibitors in vitro. In addition, in cells lacking BRCA1/2 XRD-0394 shows single-agent activity and synergy in combination with PARP inhibitors. A phase Ia clinical trial (NCT05002140) with XRD-0394 in combination with radiotherapy has completed. These results provide a rationale for future clinical trials with XRD-0394 in combination with radiotherapy, PARP inhibitors, and targeted delivery of topoisomerase I inhibitors.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteína Quinase Ativada por DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Radiossensibilizantes , Inibidores da Topoisomerase I , Humanos , Animais , Inibidores da Topoisomerase I/farmacologia , Camundongos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Radiossensibilizantes/farmacologia , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Feminino , Sinergismo Farmacológico
2.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37904990

RESUMO

Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.

3.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333373

RESUMO

The main deterrent to long-term space travel is the risk of Radiation Exposure Induced Death (REID). The National Aeronautics and Space Administration (NASA) has adopted Permissible Exposure Levels (PELs) to limit the probability of REID to 3% for the risk of death due to radiation-induced carcinogenesis. The most significant contributor to current REID estimates for astronauts is the risk of lung cancer. Recently updated lung cancer estimates from Japan's atomic bomb survivors showed that the excess relative risk of lung cancer by age 70 is roughly four-fold higher in females compared to males. However, whether sex differences may impact the risk of lung cancer due to exposure to high charge and energy (HZE) radiation is not well studied. Thus, to evaluate the impact of sex differences on the risk of solid cancer development post-HZE radiation exposure, we irradiated Rb fl/fl ; Trp53 fl/+ male and female mice infected with Adeno-Cre with various doses of 320 kVp X-rays or 600 MeV/n 56 Fe ions and monitored them for any radiation-induced malignancies. We observed that lung adenomas/carcinomas and esthesioneuroblastomas (ENBs) were the most common primary malignancies in X-ray and 56 Fe ion-exposed mice, respectively. In addition, 1 Gy 56 Fe ion exposure compared to X-rays led to a significantly higher incidence of lung adenomas/carcinomas (p=0.02) and ENBs (p<0.0001). However, we did not find a significantly higher incidence of any solid malignancies in female mice as compared to male mice, regardless of radiation quality. Furthermore, gene expression analysis of ENBs suggested a distinct gene expression pattern with similar hallmark pathways altered, such as MYC targets and MTORC1 signaling, in X-ray and 56 Fe ion-induced ENBs. Thus, our data revealed that 56 Fe ion exposure significantly accelerated the development of lung adenomas/carcinomas and ENBs compared to X-rays, but the rate of solid malignancies was similar between male and female mice, regardless of radiation quality.

4.
J Clin Invest ; 133(13)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37200088

RESUMO

ATRX is one of the most frequently altered genes in solid tumors, and mutation is especially frequent in soft tissue sarcomas. However, the role of ATRX in tumor development and response to cancer therapies remains poorly understood. Here, we developed a primary mouse model of soft tissue sarcoma and showed that Atrx-deleted tumors were more sensitive to radiation therapy and to oncolytic herpesvirus. In the absence of Atrx, irradiated sarcomas had increased persistent DNA damage, telomere dysfunction, and mitotic catastrophe. Our work also showed that Atrx deletion resulted in downregulation of the CGAS/STING signaling pathway at multiple points in the pathway and was not driven by mutations or transcriptional downregulation of the CGAS/STING pathway components. We found that both human and mouse models of Atrx-deleted sarcoma had a reduced adaptive immune response, markedly impaired CGAS/STING signaling, and increased sensitivity to TVEC, an oncolytic herpesvirus that is currently FDA approved for the treatment of aggressive melanomas. Translation of these results to patients with ATRX-mutant cancers could enable genomically guided cancer therapy approaches to improve patient outcomes.


Assuntos
Herpesviridae , Sarcoma , Animais , Camundongos , Humanos , Transdução de Sinais , Sarcoma/genética , Sarcoma/radioterapia , Proteína Nuclear Ligada ao X/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Imunidade Inata
5.
STAR Protoc ; 4(1): 102094, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853662

RESUMO

Genetically engineered mice are commonly used to model brainstem gliomas in pre-clinical research. One technique for inducing primary tumors in these genetically engineered mice involves delivering viral vectors containing the code for gene-editing proteins. We present a protocol for generating primary brainstem gliomas using the RCAS-TVA retroviral delivery system and the Cre/loxP gene editing system. We describe steps for transfecting and harvesting chicken fibroblast cells, intracranially injecting cells into mice, imaging primary tumors, and treating primary tumors with focal, image-guided brain irradiation. For complete details on the use and execution of this protocol, please refer to Deland et al. (2021).1.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Camundongos , Animais , Retroviridae/genética , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/terapia , Glioma/genética , Glioma/terapia , Recombinação Genética
6.
Cancers (Basel) ; 14(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36139666

RESUMO

Diffuse midline gliomas arise in the brainstem and other midline brain structures and cause a large proportion of childhood brain tumor deaths. Radiation therapy is the most effective treatment option, but these tumors ultimately progress. Inhibition of the phosphoinositide-3-kinase (PI3K)-like kinase, ataxia-telangiectasia mutated (ATM), which orchestrates the cellular response to radiation-induced DNA damage, may enhance the efficacy of radiation therapy. Diffuse midline gliomas in the brainstem contain loss-of-function mutations in the tumor suppressor PTEN, or functionally similar alterations in the phosphoinositide-3-kinase (PI3K) pathway, at moderate frequency. Here, we sought to determine if ATM inactivation could radiosensitize a primary mouse model of brainstem glioma driven by Pten loss. Using Cre/loxP recombinase technology and the RCAS/TVA retroviral gene delivery system, we established a mouse model of brainstem glioma driven by Pten deletion. We find that Pten-null brainstem gliomas are relatively radiosensitive at baseline. In addition, we show that deletion of Atm in the tumor cells does not extend survival of mice bearing Pten-null brainstem gliomas after focal brain irradiation. These results characterize a novel primary mouse model of PTEN-mutated brainstem glioma and provide insights into the mechanism of radiosensitization by ATM deletion, which may guide the design of future clinical trials.

7.
Int J Radiat Oncol Biol Phys ; 112(3): 771-779, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619331

RESUMO

PURPOSE: Diffuse intrinsic pontine gliomas (DIPGs) arise in the pons and are the leading cause of death from brain tumors in children. DIPGs are routinely treated with radiation therapy, which temporarily improves neurological symptoms but generally fails to achieve local control. Because numerous clinical trials have not improved survival from DIPG over standard radiation therapy alone, there is a pressing need to evaluate new therapeutic strategies for this devastating disease. Vascular damage caused by radiation therapy can increase the permeability of tumor blood vessels and promote tumor cell death. METHODS AND MATERIALS: To investigate the impact of endothelial cell death on tumor response to radiation therapy in DIPG, we used dual recombinase (Cre + FlpO) technology to generate primary brainstem gliomas which lack ataxia telangiectasia mutated (Atm) in the vasculature. RESULTS: Here, we show that Atm-deficient tumor endothelial cells are sensitized to radiation therapy. Furthermore, radiosensitization of the vasculature in primary gliomas triggered an increase in total tumor cell death. Despite the observed increase in cell killing, in mice with autochthonous DIPGs treated with radiation therapy, deletion of Atm specifically in tumor endothelial cells failed to improve survival. CONCLUSIONS: These results suggest that targeting the tumor cells, rather than endothelial cells, during radiation therapy will be necessary to improve survival among children with DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma , Animais , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/radioterapia , Células Endoteliais/patologia , Glioma/patologia , Glioma/radioterapia , Camundongos
8.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32990677

RESUMO

Diffuse intrinsic pontine glioma (DIPG) kills more children than any other type of brain tumor. Despite clinical trials testing many chemotherapeutic agents, palliative radiotherapy remains the standard treatment. Here, we utilized Cre/loxP technology to show that deleting Ataxia telangiectasia mutated (Atm) in primary mouse models of DIPG can enhance tumor radiosensitivity. Genetic deletion of Atm improved survival of mice with p53-deficient but not p53 wild-type gliomas after radiotherapy. Similar to patients with DIPG, mice with p53 wild-type tumors had improved survival after radiotherapy independent of Atm deletion. Primary p53 wild-type tumor cell lines induced proapoptotic genes after radiation and repressed the NRF2 target, NAD(P)H quinone dehydrogenase 1 (Nqo1). Tumors lacking p53 and Ink4a/Arf expressed the highest level of Nqo1 and were most resistant to radiation, but deletion of Atm enhanced the radiation response. These results suggest that tumor genotype may determine whether inhibition of ATM during radiotherapy will be an effective clinical approach to treat DIPGs.


Assuntos
Neoplasias do Tronco Encefálico , Deleção de Genes , Genótipo , Glioma , Tolerância a Radiação , Animais , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/radioterapia , Linhagem Celular Tumoral , Galinhas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/radioterapia , Camundongos , Camundongos Transgênicos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Glob Health Promot ; 23(2 Suppl): 24-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24042973

RESUMO

BACKGROUND: The World Health Organization (WHO) MPOWER is a technical package of six tobacco control measures that assist countries in meeting their obligations of the WHO Framework Convention Tobacco Control and are proven to reduce tobacco use. The Global Adult Tobacco Survey (GATS) systematically monitors adult tobacco use and tracks key tobacco control indicators. METHODS: GATS is a nationally representative household survey of adults aged 15 and older, using a standard and consistent protocol across countries; it includes information on the six WHO MPOWER measures. GATS Phase I was conducted from 2008-2010 in 14 high-burden low- and middle-income countries. We selected one key indicator from each of the six MPOWER measures and compared results across 14 countries. RESULTS: Current tobacco use prevalence rates ranged from 16.1% in Mexico to 43.3% in Bangladesh. We found that the highest rate of exposure to secondhand smoke in the workplace was in China (63.3%). We found the highest 'smoking quit attempt' rates in the past 12 months among cigarette smokers in Viet Nam (55.3%) and the lowest rate was in the Russian Federation (32.1%). In five of the 14 countries, more than one-half of current smokers in those 5 countries said they thought of quitting because of health warning labels on cigarette packages. The Philippines (74.3%) and the Russian Federation (68.0%) had the highest percentages of respondents noticing any cigarette advertising, promotion and sponsorship. Manufactured cigarette affordability ranged from 0.6% in Russia to 8.0% in India. CONCLUSIONS: Monitoring tobacco use and tobacco control policy achievements is crucial to managing and implementing measures to reverse the epidemic. GATS provides internationally-comparable data that systematically monitors and tracks the progress of the other five MPOWER measures.


Assuntos
Inquéritos Epidemiológicos/métodos , Abandono do Hábito de Fumar/estatística & dados numéricos , Fumar/epidemiologia , Poluição por Fumaça de Tabaco/estatística & dados numéricos , Adolescente , Adulto , Idoso , Feminino , Saúde Global , Inquéritos Epidemiológicos/normas , Humanos , Masculino , Pessoa de Meia-Idade , Vigilância da População , Organização Mundial da Saúde , Adulto Jovem
10.
DNA Repair (Amst) ; 11(4): 441-8, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22326273

RESUMO

The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Exodesoxirribonucleases/metabolismo , Transdução de Sinais/genética , Antígenos Nucleares/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Autoantígeno Ku , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA