Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175727, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39181261

RESUMO

Ultrafine particles (UFP) are the smallest atmospheric particulate matter linked to air pollution-related diseases. The extent to which UFP's physical and chemical properties contribute to its toxicity remains unclear. It is hypothesized that UFP act as carriers for chemicals that drive biological responses. This study explores robust methods for generating reference UFP to understand these mechanisms and perform toxicological tests. Two types of combustion-related UFP with similar elemental carbon cores and physical properties but different organic loads were generated and characterized. Human alveolar epithelial cells were exposed to these UFP at the air-liquid interface, and several toxicological endpoints were measured. UFP were generated using a miniCAST under fuel-rich conditions and immediately diluted to minimize agglomeration. A catalytic stripper and charcoal denuder removed volatile gases and semi-volatile particles from the surface. By adjusting the temperature of the catalytic stripper, UFP with high and low organic content was produced. These reference particles exhibited fractal structures with high reproducibility and stability over a year, maintaining similar mass and number concentrations (100 µg/m3, 2.0·105 #/cm3) and a mean particle diameter of about 40 nm. High organic content UFP had significant PAH levels, with benzo[a]pyrene at 0.2 % (m/m). Toxicological evaluations revealed that both UFP types similarly affected cytotoxicity and cell viability, regardless of organic load. Higher xenobiotic metabolism was noted for PAH-rich UFP, while reactive oxidation markers increased when semi-volatiles were stripped off. Both UFP types caused DNA strand breaks, but only the high organic content UFP induced DNA oxidation. This methodology allows modification of UFP's chemical properties while maintaining comparable physical properties, linking these variations to biological responses.

2.
Arch Toxicol ; 98(5): 1515-1532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38427118

RESUMO

The combustion of traditional fuels in low-income countries, including those in sub-Saharan Africa, leads to extensive indoor particle exposure. Yet, the related health consequences in this context are understudied. This study aimed to evaluate the in vitro toxicity of combustion-derived particles relevant for Sub-Saharan household environments. Particles (< 2.5 µm) were collected using a high-volume sampler during combustion of traditional Ethiopian biomass fuels: cow dung, eucalyptus wood and eucalyptus charcoal. Diesel exhaust particles (DEP, NIST 2975) served as reference particles. The highest levels of particle-bound polycyclic aromatic hydrocarbons (PAHs) were found in wood (3219 ng/mg), followed by dung (618 ng/mg), charcoal (136 ng/mg) and DEP (118 ng/mg) (GC-MS). BEAS-2B bronchial epithelial cells and THP-1 derived macrophages were exposed to particle suspensions (1-150 µg/mL) for 24 h. All particles induced concentration-dependent genotoxicity (comet assay) but no pro-inflammatory cytokine release in epithelial cells, whereas dung and wood particles also induced concentration-dependent cytotoxicity (Alamar Blue). Only wood particles induced concentration-dependent cytotoxicity and genotoxicity in macrophage-like cells, while dung particles were unique at increasing secretion of pro-inflammatory cytokines (IL-6, IL-8, TNF-α). In summary, particles derived from combustion of less energy dense fuels like dung and wood had a higher PAH content and were more cytotoxic in epithelial cells. In addition, the least energy dense and cheapest fuel, dung, also induced pro-inflammatory effects in macrophage-like cells. These findings highlight the influence of fuel type on the toxic profile of the emitted particles and warrant further research to understand and mitigate health effects of indoor air pollution.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Feminino , Bovinos , Humanos , Material Particulado/toxicidade , Material Particulado/análise , Tamanho da Partícula , Carvão Vegetal , Biomassa , Macrófagos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise
3.
Environ Res ; 248: 118355, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295973

RESUMO

INTRODUCTION: Placental function is essential for fetal development, but it may be susceptible to malnutrition and environmental stressors. OBJECTIVE: To assess the impact of toxic and essential trace elements in placenta on placental function. METHODS: Toxic metals (cadmium, lead, mercury, cobalt) and essential elements (copper, manganese, zinc, selenium) were measured in placenta of 406 pregnant women in northern Sweden using ICP-MS. Placental weight and birth weight were obtained from hospital records and fetoplacental weight ratio was used to estimate placental efficiency. Placental relative telomere length (TL) and mitochondrial DNA copy number (mtDNAcn) were determined by quantitative PCR (n = 285). Single exposure-outcome associations were evaluated using linear or spline regression, and joint associations and interactions with Bayesian kernel machine regression (BKMR), all adjusted for sex, maternal smoking, and age or BMI. RESULTS: Median cadmium, mercury, lead, cobalt, copper, manganese, zinc, and selenium concentrations in placenta were 3.2, 1.8, 4.3, 2.3, 1058, 66, 10626, and 166 µg/kg, respectively. In the adjusted regression, selenium (>147 µg/kg) was inversely associated with placental weight (B: -158; 95 % CI: -246, -71, per doubling), as was lead at low selenium (B: -23.6; 95 % CI: -43.2, -4.0, per doubling). Manganese was positively associated with placental weight (B: 41; 95 % CI: 5.9, 77, per doubling) and inversely associated with placental efficiency (B: -0.01; 95 % CI: -0.019, -0.004, per doubling). Cobalt was inversely associated with mtDNAcn (B: -11; 95 % CI: -20, -0.018, per doubling), whereas all essential elements were positively associated with mtDNAcn, individually and joint. CONCLUSION: Among the toxic metals, lead appeared to negatively impact placental weight and cobalt decreased placental mtDNAcn. Joint essential element concentrations increased placental mtDNAcn. Manganese also appeared to increase placental weight, but not birth weight. The inverse association of selenium with placental weight may reflect increased transport of selenium to the fetus in late gestation.


Assuntos
Mercúrio , Selênio , Oligoelementos , Gravidez , Feminino , Humanos , Placenta , Cobre , Manganês , Cádmio , Teorema de Bayes , Zinco , Peso ao Nascer , Cobalto , DNA Mitocondrial
4.
J Appl Toxicol ; 43(8): 1225-1241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36869434

RESUMO

The prevalence of allergic diseases is constantly increasing since few decades. Anthropogenic ultrafine particles (UFPs) and allergenic aerosols is highly involved in this increase; however, the underlying cellular mechanisms are not yet understood. Studies observing these effects focused mainly on singular in vivo or in vitro exposures of single particle sources, while there is only limited evidence on their subsequent or combined effects. Our study aimed at evaluating the effect of subsequent exposures to allergy-related anthropogenic and biogenic aerosols on cellular mechanism exposed at air-liquid interface (ALI) conditions. Bronchial epithelial BEAS-2B cells were exposed to UFP-rich combustion aerosols for 2 h with or without allergen pre-exposure to birch pollen extract (BPE) or house dust mite extract (HDME). The physicochemical properties of the generated particles were characterized by state-of-the-art analytical instrumentation. We evaluated the cellular response in terms of cytotoxicity, oxidative stress, genotoxicity, and in-depth gene expression profiling. We observed that single exposures with UFP, BPE, and HDME cause genotoxicity. Exposure to UFP induced pro-inflammatory canonical pathways, shifting to a more xenobiotic-related response with longer preincubation time. With additional allergen exposure, the modulation of pro-inflammatory and xenobiotic signaling was more pronounced and appeared faster. Moreover, aryl hydrocarbon receptor (AhR) signaling activation showed to be an important feature of UFP toxicity, which was especially pronounced upon pre-exposure. In summary, we were able to demonstrate the importance of subsequent exposure studies to understand realistic exposure situations and to identify possible adjuvant allergic effects and the underlying molecular mechanisms.


Assuntos
Poluentes Atmosféricos , Hipersensibilidade , Humanos , Material Particulado/análise , Poluentes Atmosféricos/química , Alérgenos/toxicidade , Xenobióticos , Células Epiteliais/metabolismo , Aerossóis/toxicidade , Tamanho da Partícula
5.
Toxics ; 10(12)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36548563

RESUMO

Anthropogenic activities and industrialization render continuous human exposure to semi-volatile organic compounds (SVOCs) inevitable. Occupational monitoring and safety implementations consider the inhalation exposure of SVOCs as critically relevant. Due to the inherent properties of SVOCs as gas/particle mixtures, risk assessment strategies should consider particle size-segregated SVOC association and the relevance of released gas phase fractions. We constructed an in vitro air-liquid interface (ALI) exposure system to study the distinct toxic effects of the gas and particle phases of the model SVOC dibutyl phthalate (DBP) in A549 human lung epithelial cells. Cytotoxicity was evaluated and genotoxic effects were measured by the alkaline and enzyme versions of the comet assay. Deposited doses were assessed by model calculations and chemical analysis using liquid chromatography tandem mass spectrometry. The novel ALI exposure system was successfully implemented and revealed the distinct genotoxic effects of the gas and particle phases of DBP. The empirical measurements of cellular deposition and the model calculations of the DBP particle phase were concordant.The model SVOC DBP showed that inferred oxidative DNA damage may be attributed to particle-related effects. While pure gas phase exposure may follow a distinct mechanism of genotoxicity, the contribution of the gas phase to total aerosol was comparably low.

6.
Commun Biol ; 2: 90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30854482

RESUMO

Aircraft emissions contribute to local and global air pollution. Health effects of particulate matter (PM) from aircraft engines are largely unknown, since controlled cell exposures at relevant conditions are challenging. We examined the toxicity of non-volatile PM (nvPM) emissions from a CFM56-7B26 turbofan, the world's most used aircraft turbine using an unprecedented exposure setup. We combined direct turbine-exhaust sampling under realistic engine operating conditions and the Nano-Aerosol Chamber for In vitro Toxicity to deposit particles onto air-liquid-interface cultures of human bronchial epithelial cells (BEAS-2B) at physiological conditions. We evaluated acute cellular responses after 1-h exposures to diluted exhaust from conventional or alternative fuel combustion. We show that single, short-term exposures to nvPM impair bronchial epithelial cells, and PM from conventional fuel at ground-idle conditions is the most hazardous. Electron microscopy of soot reveals varying reactivity matching the observed cellular responses. Stronger responses at lower mass concentrations suggest that additional metrics are necessary to evaluate health risks of this increasingly important emission source.


Assuntos
Aeronaves , Brônquios , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/efeitos adversos , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar , Biomarcadores , Exposição Ambiental/efeitos adversos , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
7.
Arch Toxicol ; 91(1): 163-177, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27060086

RESUMO

Oxidative stress has increasingly been demonstrated as playing a key role in the biological response induced by nanoparticles (NPs). The acellular cytochrome c oxidation assay has been proposed to determine the intrinsic oxidant-generating capacity of NPs. Yet, there is a need to improve this method to allow a rapid screening to classify NPs in terms of toxicity. We adapted the cytochrome c assay to take into account NP interference, to improve its sensitivity and to develop a high-throughput method. The intrinsic oxidative ability of a panel of NPs (carbon black, Mn2O3, Cu, Ag, BaSO4, CeO2, TiO2 and ZnO) was measured with this enhanced test and compared to other acellular redox assays. To assess whether their oxidative potential correlates with cellular responses, we studied the effect of insoluble NPs on the human bronchial epithelial cell line NCI-H292 by measuring the cytotoxicity (WST-1 assay), pro-inflammatory response (IL-8 cytokine production and expression) and antioxidant defense induction (SOD2 and HO-1 expression). The adapted cytochrome c assay had a greatly increased sensitivity allowing the ranking of NPs in terms of their oxidative potential by using the developed high-throughput technique. Besides, a high oxidative potential revealed to be predictive for toxic effects as Mn2O3 NPs induced a strong oxidation of cytochrome c and a dose-dependent cytotoxicity, pro-inflammatory response and antioxidant enzyme expression. BaSO4, which presented no intrinsic oxidative potential, had no cellular effects. Nevertheless, CeO2 and TiO2 NPs demonstrated no acellular oxidant-generating capacity but induced moderate cellular responses. In conclusion, the novel cytochrome c oxidation assay could be used for high-throughput screening of the intrinsic oxidative potential of NPs. However, acellular redox assays may not be sufficient to discriminate among low-toxicity NPs, and additional tests are thus needed.


Assuntos
Citocromos c/química , Ensaios de Triagem em Larga Escala , Indicadores e Reagentes/química , Nanopartículas Metálicas/toxicidade , Oxidantes/toxicidade , Testes de Toxicidade , Animais , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Cavalos , Humanos , Nanopartículas Metálicas/química , Oxidantes/química , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA