Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 30: 246-258, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37545481

RESUMO

Duchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in Dmd that develops an early-onset cardiac phenotype similar to DMD patients. Here we employed CRISPR-Cas9 delivered intravenously by adeno-associated virus (AAV) vectors to restore functional dystrophin expression via excision or skipping of exon 55. Exon skipping with a solitary guide significantly improved editing outcomes and dystrophin recovery over dual guide excision. Some improvements to genomic and transcript editing levels were observed when the guide dose was enhanced, but dystrophin restoration did not improve considerably. Editing and dystrophin recovery were restricted primarily to cardiac tissue. Remarkably, our exon skipping approach completely prevented onset of the cardiac phenotype in treated mice up to 12 weeks. Thus, our results demonstrate that intravenous delivery of a single-cut CRISPR-Cas9-mediated exon skipping therapy can prevent heart dysfunction in DMD in vivo.

2.
Biol Open ; 12(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37470706

RESUMO

G9a, also known as EHMT2, is essential for embryogenesis and has specific functions in multiple developmental processes. G9a inactivation affects development of the nervous system, which is formed with contribution of descendants of progenitor cells expressing the transcription factor Isl1. However, the function of G9a in Isl1-expressing progenitors is unknown. Here, we show that G9a is required for proper development of multiple structures formed with contribution of Isl1-expressing progenitors. A Cre-dependent GFP reporter revealed that the recombinase activity of the Isl1-Cre used in this study to inactivate G9a was reduced to a subset of Isl1-expressing progenitor cells. G9a mutants reached endpoint by 7 weeks of age with cardiac hypertrophy, hydrocephalus, underdeveloped cerebellum and hind limb paralysis, modeling aspects of Dandy-Walker complex. Moreover, neuroepithelium of the lateral ventricle derived from Isl1-expressing progenitors was thinner and disorganized, potentially compromising cerebrospinal fluid dynamics in G9a mutants. Micro-computed tomography after iodine staining revealed increased volume of the heart, eye lens and brain structures in G9a mutant fetuses. Thus, altered development of descendants of the second heart field and the neural crest could contribute to multicomponent malformation like Dandy-Walker.


Assuntos
Síndrome de Dandy-Walker , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase , Integrases/genética , Células-Tronco , Microtomografia por Raio-X , Animais
3.
PLoS One ; 18(7): e0287205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37494380

RESUMO

Rodents have the capacity for spontaneous bladder regeneration and bladder smooth muscle cell (BSMC) migration following a subtotal cystectomy (STC). YAP/WWTR1 and BDNF (Brain-derived neurotrophic factor) play crucial roles in development and regeneration. During partial bladder outlet obstruction (PBO), excessive YAP/WWTR1 signaling and BDNF expression increases BSMC hypertrophy and dysfunction. YAP/WWTR1 and expression of BDNF and CYR61 were examined in models of regeneration and wound repair. Live cell microscopy was utilized in an ex vivo model of STC to visualize cell movement and division. In Sprague-Dawley female rats, STC was performed by resection of the bladder dome sparing the trigone, followed by closure of the bladder. Smooth muscle migration and downstream effects on signaling and expression were also examined after scratch wound of BSMC with inhibitors of YAP and BDNF signaling. Sham, PBO and incision (cystotomy) were comparators for the STC model. Scratch wound in vitro increased SMC migration and expression of BDNF, CTGF and CYR61 in a YAP/WWTR1-dependent manner. Inhibition of YAP/WWTR1 and BDNF signaling reduced scratch-induced migration. BDNF and CYR61 expression was elevated during STC and PBO. STC induces discrete genes associated with endogenous de novo cell regeneration downstream of YAP/WWTR1 activation.


Assuntos
Cistectomia , Bexiga Urinária , Ratos , Animais , Feminino , Bexiga Urinária/metabolismo , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Liso/metabolismo , Regeneração/fisiologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
4.
EBioMedicine ; 63: 103167, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33341441

RESUMO

BACKGROUND: Dolutegravir (DTG) is a preferred regimen for all people with HIV including pregnant women, but its effects on the fetus are not fully understood. Periconceptional exposure to DTG has been associated with increased rates of neural tube defects (NTDs), although it is unknown whether this is a causal relationship. This has led to uncertainty around the use of DTG in women of reproductive potential. METHODS: Pregnant C57BL/6J mice were randomly allocated to control (water), 1x-DTG (2.5 mg/kg-peak plasma concentration ~3000 ng/ml - therapeutic level), or 5x-DTG (12.5 mg/kg-peak plasma concentration ~12,000 ng/ml - supratherapeutic level), once daily from gestational day 0.5 until sacrifice. DTG was administered with 50 mg/kg tenofovir+33.3 mg/kg emtricitabine. Fetal phenotypes were determined, and maternal and fetal folate levels were quantified by mass-spectrometry. FINDINGS: 352 litters (91 control, 150 1x-DTG, 111 5x-DTG) yielding 2776 fetuses (747 control, 1174 1x-DTG, 855 5x-DTG) were assessed. Litter size and viability rates were similar between groups. Fetal and placenta weights were lower in the 1x-DTG vs. control. Placental weight was higher in the 5x-DTG vs. control. Five NTDs were observed, all in the 1x-DTG group. Fetal defects, including microphthalmia, severe edema, and vascular/bleeding defects were more frequent in the 1x-DTG group. In contrast, defect rates in the 5x-DTG were similar to control. Fetal folate levels were similar between control and 1x-DTG, but were significantly higher in the 5x-DTG group. INTERPRETATION: Our findings support a causal relationship of DTG at therapeutic doses with increased risk for fetal defects, including NTDs at a rate that is similar that reported in the Tsepamo study for women exposed to DTG-based ART from conception. The non-monotonic dose-response relationship between DTG and fetal anomalies could explain the previous lack of fetal toxicity findings from pre-clinical DTG studies. The fetal folate levels suggest that DTG is unlikely to be an inhibitor of folate uptake. FUNDING: This project has been funded with Federal funds from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN275201800001I.


Assuntos
Anormalidades Congênitas/etiologia , Infecções por HIV/complicações , Inibidores de Integrase de HIV/efeitos adversos , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Oxazinas/efeitos adversos , Piperazinas/efeitos adversos , Piridonas/efeitos adversos , Animais , Anormalidades Congênitas/diagnóstico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Inibidores de Integrase de HIV/uso terapêutico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Imuno-Histoquímica , Exposição Materna/efeitos adversos , Camundongos , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/etiologia , Razão de Chances , Oxazinas/uso terapêutico , Fenótipo , Piperazinas/uso terapêutico , Gravidez , Piridonas/uso terapêutico , Medição de Risco , Fatores de Risco
5.
Cell Death Dis ; 10(10): 743, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582728

RESUMO

Necrotizing enterocolitis (NEC) is a devastating neonatal disease characterized by acute intestinal injury. Intestinal stem cell (ISC) renewal is required for gut regeneration in response to acute injury. The Wnt/ß-catenin pathway is essential for intestinal renewal and ISC maintenance. We found that ISC expression, Wnt activity and intestinal regeneration were all decreased in both mice with experimental NEC and in infants with acute active NEC. Moreover, intestinal organoids derived from NEC-injured intestine of both mice and humans failed to maintain proliferation and presented more differentiation. Administration of Wnt7b reversed these changes and promoted growth of intestinal organoids. Additionally, administration of exogenous Wnt7b rescued intestinal injury, restored ISC, and reestablished intestinal epithelial homeostasis in mice with NEC. Our findings demonstrate that during NEC, Wnt/ß-catenin signaling is decreased, ISC activity is impaired, and intestinal regeneration is defective. Administration of Wnt resulted in the maintenance of intestinal epithelial homeostasis and avoidance of NEC intestinal injury.


Assuntos
Enterocolite Necrosante/fisiopatologia , Intestinos/fisiopatologia , Regeneração/fisiologia , Via de Sinalização Wnt , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Enterocolite Necrosante/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteínas Proto-Oncogênicas/administração & dosagem , Proteínas Proto-Oncogênicas/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Análise de Sobrevida , Proteínas Wnt/administração & dosagem , Proteínas Wnt/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética
6.
Am J Pathol ; 188(10): 2177-2194, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30121256

RESUMO

Chronic bladder obstruction and bladder smooth muscle cell (SMC) stretch provide fibrotic and mechanical environments that can lead to epigenetic change. Therefore, we examined the role of DNA methylation in bladder pathology and transcriptional control. Sprague-Dawley female rats underwent partial bladder obstruction by ligation of a silk suture around the proximal urethra next to a 0.9-mm steel rod. Sham operation comprised passing the suture around the urethra. After 2 weeks, rats were randomized to normal saline or DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine (DAC) at 1 mg/kg, three times/week intraperitoneally. After 6 weeks, bladders were weighed and divided for histology and RNA analysis by high-throughput real-time quantitative PCR arrays. DAC treatment during obstruction in vivo profoundly augmented brain-derived neurotrophic factor (BDNF) expression compared with the obstruction with vehicle group, which was statistically correlated with pathophysiologic parameters. BDNF, cysteine rich angiogenic inducer 61 (CYR61), and connective tissue growth factor (CTGF) expression clustered tightly together using Pearson's correlation analysis. Their promoters were associated with the TEA domain family member 1 (TEAD1) and Yes-associated protein 1/WW domain containing transcription regulator 1 pathways. Interestingly, DAC treatment increased BDNF expression in bladder SMCs (P < 0.0002). Stretch-induced BDNF was inhibited by the YAP/WWTR1 inhibitor verteporfin. Verteporfin improved the SMC phenotype (proliferative markers and SMC marker expression), in part by reducing BDNF. Expression of BDNF is limited by DNA methylation and associated with pathophysiologic changes during partial bladder outlet obstruction and SMC phenotypic change in vitro.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Metilação de DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-yes/metabolismo , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Animais , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Proteína Rica em Cisteína 61/metabolismo , Feminino , Miócitos de Músculo Liso/fisiologia , Ratos Sprague-Dawley , Estresse Mecânico , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Verteporfina/farmacologia , Domínios WW/fisiologia
7.
Blood ; 131(20): 2223-2234, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29555646

RESUMO

Despite the well-established cell-intrinsic role of epigenetic factors in normal and malignant hematopoiesis, their cell-extrinsic role remains largely unexplored. Herein we investigated the hematopoietic impact of inactivating Ezh2, a key component of polycomb repressive complex 2 (PRC2), in the fetal liver (FL) vascular niche. Hematopoietic specific (Vav-iCre) Ezh2 inactivation enhanced FL hematopoietic stem cell (HSC) expansion with normal FL erythropoiesis. In contrast, endothelium (Tie2-Cre) targeted Ezh2 inactivation resulted in embryonic lethality with severe anemia at embryonic day 13.5 despite normal emergence of functional HSCs. Ezh2-deficient FL endothelium overexpressed Mmp9, which cell-extrinsically depleted the membrane-bound form of Kit ligand (mKitL), an essential hematopoietic cytokine, in FL. Furthermore, Mmp9 inhibition in vitro restored mKitL expression along with the erythropoiesis supporting capacity of FL endothelial cells. These data establish that Ezh2 is intrinsically dispensable for FL HSCs and provides proof of principle that modulation of epigenetic regulators in niche components can exert a marked cell-extrinsic impact.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feto , Hematopoese Extramedular , Fígado/fisiologia , Anemia/genética , Anemia/metabolismo , Animais , Biomarcadores , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Imunofluorescência , Expressão Gênica , Inativação Gênica , Hematopoese Extramedular/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fenótipo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Fator de Células-Tronco/metabolismo
8.
Development ; 144(11): 1976-1987, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28455378

RESUMO

Defective fetoplacental vascular maturation causes intrauterine growth restriction (IUGR). A transcriptional switch initiates placental maturation, during which blood vessels elongate. However, the cellular mechanisms and regulatory pathways involved are unknown. We show that the histone methyltransferase G9a, also known as Ehmt2, activates the Notch pathway to promote placental vascular maturation. Placental vasculature from embryos with G9a-deficient endothelial progenitor cells failed to expand owing to decreased endothelial cell proliferation and increased trophoblast proliferation. Moreover, G9a deficiency altered the transcriptional switch initiating placental maturation and caused downregulation of Notch pathway effectors including Rbpj Importantly, Notch pathway activation in G9a-deficient endothelial progenitors extended embryonic life and rescued placental vascular expansion. Thus, G9a activates the Notch pathway to balance endothelial cell and trophoblast proliferation and coordinates the transcriptional switch controlling placental vascular maturation. Accordingly, G9A and RBPJ were downregulated in human placentae from IUGR-affected pregnancies, suggesting that G9a is an important regulator in placental diseases caused by defective vascular maturation.


Assuntos
Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Placenta/irrigação sanguínea , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Movimento Celular/genética , Proliferação de Células , Regulação para Baixo/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/ultraestrutura , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Retardo do Crescimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Organogênese/genética , Placenta/citologia , Placenta/ultraestrutura , Gravidez , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica , Trofoblastos/citologia , Trofoblastos/metabolismo
9.
PLoS One ; 11(3): e0149118, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26964089

RESUMO

UNLABELLED: Host-pathogen interactions can induce epigenetic changes in the host directly, as well as indirectly through secreted factors. Previously, uropathogenic Escherichia coli (UPEC) was shown to increase DNA methyltransferase activity and expression, which was associated with methylation-dependent alterations in the urothelial expression of CDKN2A. Here, we showed that paracrine factors from infected cells alter expression of another epigenetic writer, EZH2, coordinate with proliferation. Urothelial cells were inoculated with UPEC, UPEC derivatives, or vehicle (mock infection) at low moi, washed, then maintained in media with Gentamycin. Urothelial conditioned media (CM) and extracellular vesicles (EV) were isolated after the inoculations and used to treat naïve urothelial cells. EZH2 increased with UPEC infection, inoculation-induced CM, and inoculation-induced EV vs. parallel stimulation derived from mock-inoculated urothelial cells. We found that infection also increased proliferation at one day post-infection, which was blocked by the EZH2 inhibitor UNC1999. Inhibition of demethylation at H3K27me3 had the opposite effect and augmented proliferation. CONCLUSION: Uropathogen-induced paracrine factors act epigenetically by altering expression of EZH2, which plays a key role in early host cell proliferative responses to infection.


Assuntos
Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Complexo Repressor Polycomb 2/metabolismo , Escherichia coli Uropatogênica/fisiologia , Linhagem Celular , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/patologia , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Comunicação Parácrina , Proteínas Proto-Oncogênicas/metabolismo , Urotélio/metabolismo , Urotélio/microbiologia , Urotélio/patologia , Proteínas Wnt/metabolismo , Proteína Wnt-5a
10.
Development ; 141(23): 4610-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25359725

RESUMO

Maintenance of vascular integrity is required for embryogenesis and organ homeostasis. However, the gene expression programs that stabilize blood vessels are poorly understood. Here, we show that the histone methyltransferase Ezh2 maintains integrity of the developing vasculature by repressing a transcriptional program that activates expression of Mmp9. Inactivation of Ezh2 in developing mouse endothelium caused embryonic lethality with compromised vascular integrity and increased extracellular matrix degradation. Genome-wide approaches showed that Ezh2 targets Mmp9 and its activators Fosl1 and Klf5. In addition, we uncovered Creb3l1 as an Ezh2 target that directly activates Mmp9 gene expression in the endothelium. Furthermore, genetic inactivation of Mmp9 rescued vascular integrity defects in Ezh2-deficient embryos. Thus, epigenetic repression of Creb3l1, Fosl1, Klf5 and Mmp9 by Ezh2 in endothelial cells maintains the integrity of the developing vasculature, potentially linking this transcriptional network to diseases with compromised vascular integrity.


Assuntos
Vasos Sanguíneos/embriologia , Repressão Epigenética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Complexo Repressor Polycomb 2/metabolismo , Transdução de Sinais/fisiologia , Animais , Benzotiazóis , Western Blotting , Imunoprecipitação da Cromatina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Primers do DNA/genética , Diaminas , Proteína Potenciadora do Homólogo 2 de Zeste , Repressão Epigenética/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Hibridização In Situ , Fatores de Transcrição Kruppel-Like , Luciferases , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Compostos Orgânicos , Complexo Repressor Polycomb 2/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinolinas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
11.
Nat Commun ; 5: 4533, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25208486

RESUMO

Human dilated cardiomyopathy (DCM) manifests as a profound reduction in biventricular cardiac function that typically progresses to death or cardiac transplantation. There is no effective mechanism-based therapy currently available for DCM, in part because the transduction of mechanical load into dynamic changes in cardiac contractility (termed mechanotransduction) remains an incompletely understood process during both normal cardiac function and in disease states. Here we show that the mechanoreceptor protein integrin-linked kinase (ILK) mediates cardiomyocyte force transduction through regulation of the key calcium regulatory protein sarcoplasmic/endoplasmic reticulum Ca(2+)ATPase isoform 2a (SERCA-2a) and phosphorylation of phospholamban (PLN) in the human heart. A non-oncogenic ILK mutation with a synthetic point mutation in the pleckstrin homology-like domain (ILK(R211A)) is shown to enhance global cardiac function through SERCA-2a/PLN. Thus, ILK serves to link mechanoreception to the dynamic modulation of cardiac contractility through a previously undiscovered interaction with the functional SERCA-2a/PLN module that can be exploited to rescue impaired mechanotransduction in DCM.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Mecanotransdução Celular/genética , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinases/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Humanos , Células-Tronco Pluripotentes Induzidas , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Knockout , Contração Miocárdica/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
Gene Expr Patterns ; 13(8): 319-27, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23816522

RESUMO

The NOL1/NOP2/sun domain-containing genes encode the RNA methyltransferases Nsun2, 3, 4, 5, 6 and 7. Methylated RNA pervades the transcriptome, yet the function of RNA methyltransferases is poorly understood. Nsun2 and Nsun4 participate in cell proliferation and differentiation, protein biosynthesis and cancer. In addition, Nsun2 and Nsun7 dysfunction might cause intellectual disability and male sterility, respectively. The functions of Nsun3, Nsun5 and Nsun6 are unknown. Given the widespread distribution of RNA methylation, it is possible that Nsun genes participate in a broader range of relevant biological processes including the regulation of embryogenesis. Here, we describe the expression pattern of Nsun genes during mouse embryo development. In situ hybridization showed developmentally regulated Nsun gene expression. Nsun genes express broadly during gastrulation, but enrich in specific tissues as embryogenesis proceeds. Nsun transcripts enrich in the developing brain, consistent with proposed functions in neurocognitive development. In addition, Nsun transcripts enrich in the developing ear, eye, olfactory epithelium, branchial arches, heart and limb, suggesting possible overlapping functions of NSUN proteins in neural, craniofacial, cardiac, and limb morphogenesis. Furthermore, Nsun2 and Nsun6 enrich in the caudal neural tube and newly formed somites, suggesting possible functions in body axis extension. These results suggest possible overlapping functions of NSUN proteins and RNA methylation in broad aspects of embryonic development.


Assuntos
Proteínas de Transporte/metabolismo , Expressão Gênica , Metiltransferases/metabolismo , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Indução Enzimática , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Metiltransferases/genética , Camundongos , Especificidade de Órgãos
13.
EMBO Mol Med ; 5(7): 1017-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23733368

RESUMO

Activation of inflammatory pathways in the endothelium contributes to vascular diseases, including sepsis and atherosclerosis. We demonstrate that miR-146a and miR-146b are induced in endothelial cells upon exposure to pro-inflammatory cytokines. Despite the rapid transcriptional induction of the miR-146a/b loci, which is in part mediated by EGR-3, miR-146a/b induction is delayed and sustained compared to the expression of leukocyte adhesion molecules, and in fact coincides with the down-regulation of inflammatory gene expression. We demonstrate that miR-146 negatively regulates inflammation. Over-expression of miR-146a blunts endothelial activation, while knock-down of miR-146a/b in vitro or deletion of miR-146a in mice has the opposite effect. MiR-146 represses the pro-inflammatory NF-κB pathway as well as the MAP kinase pathway and downstream EGR transcription factors. Finally, we demonstrate that HuR, an RNA binding protein that promotes endothelial activation by suppressing expression of endothelial nitric oxide synthase (eNOS), is a novel miR-146 target. Thus, we uncover an important negative feedback regulatory loop that controls pro-inflammatory signalling in endothelial cells that may impact vascular inflammatory diseases.


Assuntos
Células Endoteliais/imunologia , Mediadores da Inflamação/imunologia , MicroRNAs/imunologia , Transdução de Sinais , Animais , Linhagem Celular , Citocinas/imunologia , Regulação para Baixo , Proteínas ELAV/imunologia , Células Endoteliais/metabolismo , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Loci Gênicos , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Fator de Transcrição AP-1/imunologia , Ativação Transcricional , Regulação para Cima
14.
Comp Biochem Physiol A Mol Integr Physiol ; 147(3): 750-760, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17188536

RESUMO

At the present time research situates differential regulation of gene expression in an increasingly complex scenario based on interplay between genetic and epigenetic information networks, which need to be highly coordinated. Here we describe in a comparative way relevant concepts and models derived from studies on the chicken alpha- and beta-globin group of genes. We discuss models for globin switching and mechanisms for coordinated transcriptional activation. A comparative overview of globin genes chromatin structure, based on their genomic domain organization and epigenetic components is presented. We argue that the results of those studies and their integrative interpretation may contribute to our understanding of epigenetic abnormalities, from beta-thalassemias to human cancer. Finally we discuss the interdependency of genetic-epigenetic components and the need of their mutual consideration in order to visualize the regulation of gene expression in a more natural context and consequently better understand cell differentiation, development and cancer.


Assuntos
Cromatina/química , Epigênese Genética , Globinas/genética , Neoplasias/genética , Transcrição Gênica , Animais , Globinas/química , Globinas/metabolismo , Humanos , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA