Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748577

RESUMO

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Animais , Via de Sinalização Wnt , Claudina-5/metabolismo , Claudina-5/genética , AMP Cíclico/metabolismo , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Junções Íntimas/metabolismo , beta Catenina/metabolismo
2.
Fluids Barriers CNS ; 20(1): 15, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882782

RESUMO

BACKGROUND: Hypertriglyceridemia is closely linked to atherosclerosis related inflammatory processes and blood-brain barrier (BBB) dysfunction. Using apolipoprotein B-100 (APOB-100) transgenic mice, an animal model of chronic hypertriglyceridemia, we analyzed BBB function and morphology in vitro and ex vivo. Our objective was to determine which BBB characteristics are produced mainly by interleukin (IL)-6, an atherosclerosis promoting cytokine, and whether these actions can be antagonized by IL-10, an anti-inflammatory cytokine. METHODS: Brain endothelial and glial cell cultures and brain microvessels were isolated from wild type (WT) and APOB-100 transgenic mice and were treated with IL-6, IL-10 and their combination. First, IL-6 and IL-10 production was measured in WT and APOB-100 microvessels using qPCR. Then functional parameters of endothelial cell cultures were analyzed and immunocytochemistry for key BBB proteins was performed. RESULTS: IL-6 mRNA levels were higher in brain microvessels than in brain parenchyma of APOB-100 transgenic mice. Transendothelial electric resistance and P-glycoprotein activity were lower, and paracellular permeability was higher in cultured APOB-100 brain endothelial cells. These features were sensitive to both IL-6 and IL-10 treatments. A decreased P-glycoprotein immunostaining was measured in transgenic endothelial cells under control conditions and in WT cells after treating them with IL-6. This effect was antagonized by IL-10. Changes in immunostaining for tight junction proteins were observed after IL-6 exposure, which were in part antagonized by IL-10. In glial cell cultures an increase in aquaporin-4 immunolabeling in the transgenic group and an increase in microglia cell density in WT glia cultures was detected after IL-6 treatment, which was antagonized by IL-10. In isolated brain microvessels a decrease in P-glycoprotein immunolabeled area fraction was measured in APOB-100 microvessels under control conditions and in WT microvessels after every cytokine treatment. ZO-1 immunolabeling showed characteristics similar to that of P-glycoprotein. No change was seen in claudin-5 and occludin immunoreactive area fractions in microvessels. A decrease in aquaporin-4 immunoreactivity was measured in WT microvessels treated by IL-6, which was antagonized by IL-10. CONCLUSION: IL-6 produced in microvessels contributes to BBB impairment observed in the APOB-100 mice. We showed that IL-10 partly antagonizes the effects of IL-6 at the BBB.


Assuntos
Aterosclerose , Hipertrigliceridemia , Animais , Camundongos , Interleucina-6 , Interleucina-10 , Barreira Hematoencefálica , Apolipoproteína B-100 , Células Endoteliais , Citocinas , Camundongos Transgênicos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Aquaporina 4
3.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766845

RESUMO

Nanoparticles (NPs) are the focus of research efforts that aim to develop successful drug delivery systems for the brain. Polypeptide nanocarriers are versatile platforms and combine high functionality with good biocompatibility and biodegradability. The key to the efficient brain delivery of NPs is the specific targeting of cerebral endothelial cells that form the blood-brain barrier (BBB). We have previously discovered that the combination of two different ligands of BBB nutrient transporters, alanine and glutathione, increases the permeability of vesicular NPs across the BBB. Our aim here was to investigate whether the combination of these molecules can also promote the efficient transfer of 3-armed poly(l-glutamic acid) NPs across a human endothelial cell and brain pericyte BBB co-culture model. Alanine and glutathione dual-targeted polypeptide NPs showed good cytocompatibility and elevated cellular uptake in a time-dependent and active manner. Targeted NPs had a higher permeability across the BBB model and could subsequently enter midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. These results indicate that poly(l-glutamic acid) NPs can be used as nanocarriers for nervous system application and that the right combination of molecules that target cerebral endothelial cells, in this case alanine and glutathione, can facilitate drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Alanina , Ácido Glutâmico , Encéfalo , Peptídeos/farmacologia , Peptídeos/química , Glutationa , Organoides
4.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012212

RESUMO

Estrogens regulate a variety of neuroendocrine, reproductive and also non-reproductive brain functions. Estradiol biosynthesis in the central nervous system (CNS) is catalyzed by the enzyme aromatase, which is expressed in several brain regions by neurons, astrocytes and microglia. In this study, we performed a complex fluorescent immunocytochemical analysis which revealed that aromatase is colocalized with the nuclear stain in glial fibrillary acidic protein (GFAP) positive astrocytes in cell cultures. Confocal immunofluorescent Z-stack scanning analysis confirmed the colocalization of aromatase with the nuclear DAPI signal. Nuclear aromatase was also detectable in the S100ß positive astrocyte subpopulation. When the nuclear aromatase signal was present, estrogen receptor alpha was also abundant in the nucleus. Immunostaining of frozen brain tissue sections showed that the nuclear colocalization of the enzyme in GFAP-positive astrocytes is also detectable in the adult rat brain. CD11b/c labelled microglial cells express aromatase, but the immunopositive signal was distributed only in the cytoplasm both in the ramified and amoeboid microglial forms. Immunostaining of rat ovarian tissue sections and human granulosa cells revealed that aromatase was present only in the cytoplasm. This novel observation suggests a new unique mechanism in astrocytes that may regulate certain CNS functions via estradiol production.


Assuntos
Aromatase , Astrócitos , Animais , Aromatase/metabolismo , Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Estradiol/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Neurônios/metabolismo , Ratos
5.
Eur J Pharm Sci ; 173: 106184, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413433

RESUMO

Novel series of cyclic C5-curcuminoids 17a-j and 19-22 were prepared as cytotoxic agents and evaluated against human neuroblastoma (SH-SY5Y) or human grade IV astrocytoma (CCF-STTG1) cell lines in low (∼0.1 nM - 10 nM) concentrations. Among the tested 21 derivatives, 16 displayed potent antiproliferative activity with IC50 values in the low nanomolar to picomolar range (IC50 = 7.483-0.139 nM). Highly active compounds like N-monocarboxylic derivative 19b with IC50 = 0.139 nM value against neuroblastoma and N-alkyl substituted 11 with IC50 = 0.257 nM against astrocytoma proved some degree of selectivity toward non-cancerous astrocytes and kidney cells. This potent anticancer activity did not show a strong correlation with experimental logPTLC values, but the most potent antiproliferative molecules 11-13 and 19-22 are belonging to discrete subgroups of the cyclic C5-curcuminoids. Compounds 12, 17c and 19b were subjected to blood-brain barrier (BBB) penetration studies, too. The BBB was revealed to be permeable for all of them but, as the apparent permeability coefficient (Papp) values mirrored, in different ratios. Lower toxicity of 12, 17c and 19b was observed toward primary rat brain endothelial cells of the BBB model, which means they remained undamaged under 10 µM concentrations. Penetration depends, at least in part, on albumin binding of 12, 17c and 19b and the presence of monocarboxylic acid transporters in the case of 19b. Permeation through the BBB and albumin binding, we described here, is the first example of cyclic C5-curcuminoids as to our knowledge.


Assuntos
Antineoplásicos , Astrocitoma , Neuroblastoma , Albuminas/metabolismo , Animais , Antineoplásicos/química , Astrocitoma/tratamento farmacológico , Astrocitoma/metabolismo , Barreira Hematoencefálica/metabolismo , Diarileptanoides/metabolismo , Diarileptanoides/farmacologia , Células Endoteliais/metabolismo , Neuroblastoma/metabolismo , Ratos , Relação Estrutura-Atividade
6.
Int J Mol Sci ; 22(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34948054

RESUMO

The brain insulin metabolism alteration has been addressed as a pathophysiological factor underlying Alzheimer's disease (AD). Insulin can be beneficial in AD, but its macro-polypeptide nature negatively influences the chances of reaching the brain. The intranasal (IN) administration of therapeutics in AD suggests improved brain-targeting. Solid lipid nanoparticles (SLNs) and poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) are promising carriers to deliver the IN-administered insulin to the brain due to the enhancement of the drug permeability, which can even be improved by chitosan-coating. In the present study, uncoated and chitosan-coated insulin-loaded SLNs and PLGA NPs were formulated and characterized. The obtained NPs showed desirable physicochemical properties supporting IN applicability. The in vitro investigations revealed increased mucoadhesion, nasal diffusion, and drug release rate of both insulin-loaded nanocarriers over native insulin with the superiority of chitosan-coated SLNs. Cell-line studies on human nasal epithelial and brain endothelial cells proved the safety IN applicability of nanoparticles. Insulin-loaded nanoparticles showed improved insulin permeability through the nasal mucosa, which was promoted by chitosan-coating. However, native insulin exceeded the blood-brain barrier (BBB) permeation compared with nanoparticulate formulations. Encapsulating insulin into chitosan-coated NPs can be beneficial for ensuring structural stability, enhancing nasal absorption, followed by sustained drug release.


Assuntos
Encéfalo/citologia , Quitosana/química , Insulina/farmacologia , Nariz/citologia , Encéfalo/metabolismo , Linhagem Celular , Liberação Controlada de Fármacos , Células Endoteliais/química , Células Endoteliais/citologia , Insulina/química , Lipossomos/química , Nanopartículas/química , Nariz/química , Tamanho da Partícula , Ácido Poliglicólico/química
7.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638919

RESUMO

Several clinical studies indicate that smoking predisposes its consumers to esophageal inflammatory and malignant diseases, but the cellular mechanism is not clear. Ion transporters protect esophageal epithelial cells by maintaining intracellular pH at normal levels. In this study, we hypothesized that smoking affects the function of ion transporters, thus playing a role in the development of smoking-induced esophageal diseases. Esophageal cell lines were treated with cigarettesmoke extract (CSE), and the viability and proliferation of the cells, as well as the activity, mRNA and protein expression of the Na+/H+ exchanger-1 (NHE-1), were studied. NHE-1 expression was also investigated in human samples. For chronic treatment, guinea pigs were exposed to tobacco smoke, and NHE-1 activity was measured. Silencing of NHE-1 was performed by using specific siRNA. CSE treatment increased the activity and protein expression of NHE-1 in the metaplastic cells and decreased the rate of proliferation in a NHE-1-dependent manner. In contrast, CSE increased the proliferation of dysplastic cells independently of NHE-1. In the normal cells, the expression and activity of NHE-1 decreased due to in vitro and in vivo smoke exposure. Smoking enhances the function of NHE-1 in Barrett's esophagus, and this is presumably a compensatory mechanism against this toxic agent.


Assuntos
Esôfago de Barrett/genética , Proliferação de Células/genética , Esôfago/metabolismo , Interferência de RNA , Fumaça , Trocador 1 de Sódio-Hidrogênio/genética , Animais , Esôfago de Barrett/metabolismo , Esôfago de Barrett/patologia , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/metabolismo , Esôfago/patologia , Expressão Gênica , Cobaias , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Fumar , Trocador 1 de Sódio-Hidrogênio/metabolismo , Nicotiana/química
8.
ACS Appl Mater Interfaces ; 13(33): 39018-39029, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34397215

RESUMO

Targeting nanoparticles as drug delivery platforms is crucial to facilitate their cellular entry. Docking of nanoparticles by targeting ligands on cell membranes is the first step for the initiation of cellular uptake. As a model system, we studied brain microvascular endothelial cells, which form the anatomical basis of the blood-brain barrier, and the tripeptide glutathione, one of the most effective targeting ligands of nanoparticles to cross the blood-brain barrier. To investigate this initial docking step between glutathione and the membrane of living brain endothelial cells, we applied our recently developed innovative optical method. We present a microtool, with a task-specific geometry used as a probe, actuated by multifocus optical tweezers to characterize the adhesion probability and strength of glutathione-coated surfaces to the cell membrane of endothelial cells. The binding probability of the glutathione-coated surface and the adhesion force between the microtool and cell membrane was measured in a novel arrangement: cells were cultured on a vertical polymer wall and the mechanical forces were generated laterally and at the same time, perpendicularly to the plasma membrane. The adhesion force values were also determined with more conventional atomic force microscopy (AFM) measurements using functionalized colloidal probes. The optical trapping-based method was found to be suitable to measure very low adhesion forces (≤ 20 pN) without a high level of noise, which is characteristic for AFM measurements in this range. The holographic optical tweezers-directed functionalized microtools may help characterize the adhesion step of nanoparticles initiating transcytosis and select ligands to target nanoparticles.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Glutationa/metabolismo , Nanopartículas/metabolismo , Pinças Ópticas , Fenômenos Biofísicos , Barreira Hematoencefálica/metabolismo , Encéfalo , Adesão Celular , Membrana Celular/ultraestrutura , Células Endoteliais/citologia , Galactosamina/química , Humanos , Ligantes , Microscopia de Força Atômica , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/metabolismo , Propriedades de Superfície , Transcitose
9.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281178

RESUMO

Quercetin-3-glucuronide (Q3GA), the main phase II metabolite of quercetin (Q) in human plasma, is considered to be a more stable form of Q for transport with the bloodstream to tissues, where it can be potentially deconjugated by ß-glucuronidase (ß-Gluc) to Q aglycone, which easily enters the brain. This study evaluates the effect of lipopolysaccharide (LPS)-induced acute inflammation on ß-Gluc gene expression in the choroid plexus (ChP) and its activity in blood plasma, ChP and cerebrospinal fluid (CSF), and the concentration of Q and its phase II metabolites in blood plasma and CSF. Studies were performed on saline- and LPS-treated adult ewes (n = 40) receiving Q3GA intravenously (n = 16) and on primary rat ChP epithelial cells and human ChP epithelial papilloma cells. We observed that acute inflammation stimulated ß-Gluc activity in the ChP and blood plasma, but not in ChP epithelial cells and CSF, and did not affect Q and its phase II metabolite concentrations in plasma and CSF, except Q3GA, for which the plasma concentration was higher 30 min after administration (p < 0.05) in LPS- compared to saline-treated ewes. The lack of Q3GA deconjugation in the ChP observed under physiological and acute inflammatory conditions, however, does not exclude its possible role in the course of neurodegenerative diseases.


Assuntos
Plexo Corióideo/metabolismo , Glucuronidase/metabolismo , Quercetina/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Plexo Corióideo/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Glucuronidase/sangue , Glucuronidase/líquido cefalorraquidiano , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Cultura Primária de Células , Quercetina/análogos & derivados , Quercetina/sangue , Quercetina/líquido cefalorraquidiano , Ratos , Ratos Wistar , Ovinos
10.
Biology (Basel) ; 10(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200909

RESUMO

The formation of Pseudomonas aeruginosa biofilms in cystic fibrosis (CF) is one of the most common causes of morbidity and mortality in CF patients. Cyclic di-GMP and cyclic AMP are second messengers regulating the bacterial lifestyle transition in response to environmental signals. We aimed to investigate the effects of extracellular pH and bicarbonate on intracellular c-di-GMP and cAMP levels, and on biofilm formation. P. aeruginosa was inoculated in a brain−heart infusion medium supplemented with 25 and 50 mM NaCl in ambient air (pH adjusted to 7.4 and 7.7 respectively), or with 25 and 50 mM NaHCO3 in 5% CO2 (pH 7.4 and 7.7). After 16 h incubation, c-di-GMP and cAMP were extracted and their concentrations determined. Biofilm formation was investigated using an xCelligence real-time cell analyzer and by crystal violet assay. Our results show that HCO3− exposure decreased c-di-GMP and increased cAMP levels in a dose-dependent manner. Biofilm formation was also reduced after 48 h exposure to HCO3−. The reciprocal changes in second messenger concentrations were not influenced by changes in medium pH or osmolality. These findings indicate that HCO3− per se modulates the levels of c-di-GMP and cAMP, thereby inhibiting biofilm formation and promoting the planktonic lifestyle of the bacteria.

11.
J Cereb Blood Flow Metab ; 41(9): 2201-2215, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563079

RESUMO

Microfluidic lab-on-a-chip (LOC) devices allow the study of blood-brain barrier (BBB) properties in dynamic conditions. We studied a BBB model, consisting of human endothelial cells derived from hematopoietic stem cells in co-culture with brain pericytes, in an LOC device to study fluid flow in the regulation of endothelial, BBB and glycocalyx-related genes and surface charge. The highly negatively charged endothelial surface glycocalyx functions as mechano-sensor detecting shear forces generated by blood flow on the luminal side of brain endothelial cells and contributes to the physical barrier of the BBB. Despite the importance of glycocalyx in the regulation of BBB permeability in physiological conditions and in diseases, the underlying mechanisms remained unclear. The MACE-seq gene expression profiling analysis showed differentially expressed endothelial, BBB and glycocalyx core protein genes after fluid flow, as well as enriched pathways for the extracellular matrix molecules. We observed increased barrier properties, a higher intensity glycocalyx staining and a more negative surface charge of human brain-like endothelial cells (BLECs) in dynamic conditions. Our work is the first study to provide data on BBB properties and glycocalyx of BLECs in an LOC device under dynamic conditions and confirms the importance of fluid flow for BBB culture models.


Assuntos
Barreira Hematoencefálica/metabolismo , Glicocálix/metabolismo , Dispositivos Lab-On-A-Chip/normas , Animais , Bovinos , Modelos Animais de Doenças , Humanos
12.
Sci Rep ; 10(1): 22422, 2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33380731

RESUMO

The glycocalyx is thought to perform a potent, but not yet defined function in cellular adhesion and signaling. Since 95% of cancer cells have altered glycocalyx structure, this role can be especially important in cancer development and metastasis. The glycocalyx layer of cancer cells directly influences cancer progression, involving the complicated kinetic process of cellular adhesion at various levels. In the present work, we investigated the effect of enzymatic digestion of specific glycocalyx components on cancer cell adhesion to RGD (arginine-glycine-aspartic acid) peptide motif displaying surfaces. High resolution kinetic data of cell adhesion was recorded by the surface sensitive label-free resonant waveguide grating (RWG) biosensor, supported by fluorescent staining of the cells and cell surface charge measurements. We found that intense removal of chondroitin sulfate (CS) and dermatan sulfate chains by chondroitinase ABC reduced the speed and decreased the strength of adhesion of HeLa cells. In contrast, mild digestion of glycocalyx resulted in faster and stronger adhesion. Control experiments on a healthy and another cancer cell line were also conducted, and the discrepancies were analysed. We developed a biophysical model which was fitted to the kinetic data of HeLa cells. Our analysis suggests that the rate of integrin receptor transport to the adhesion zone and integrin-RGD binding is strongly influenced by the presence of glycocalyx components, but the integrin-RGD dissociation is not. Moreover, based on the kinetic data we calculated the dependence of the dissociation constant of integrin-RGD binding on the enzyme concentration. We also determined the dissociation constant using a 2D receptor binding model based on saturation level static data recorded at surfaces with tuned RGD densities. We analyzed the discrepancies of the kinetic and static dissociation constants, further illuminating the role of cancer cell glycocalyx during the adhesion process. Altogether, our experimental results and modelling demonstrated that the chondroitin sulfate and dermatan sulfate chains of glycocalyx have an important regulatory function during the cellular adhesion process, mainly controlling the kinetics of integrin transport and integrin assembly into mature adhesion sites. Our results potentially open the way for novel type of cancer treatments affecting these regulatory mechanisms of cellular glycocalyx.


Assuntos
Adesão Celular/fisiologia , Glicocálix/metabolismo , Glicocálix/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Fenômenos Biofísicos , Técnicas Biossensoriais , Condroitina ABC Liase/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Adesões Focais/metabolismo , Adesões Focais/patologia , Células HeLa , Humanos , Integrinas/metabolismo , Cinética , Modelos Biológicos , Oligopeptídeos/metabolismo
13.
Microvasc Res ; 132: 104059, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798551

RESUMO

The blood-brain barrier (BBB) maintains the optimal microenvironment for brain function. Tight junctions (TJs) allow endothelial cells to adhere to each other, leading to the formation of a barrier that prevents the penetration of most molecules via transcellular routes. Evidence has indicated that seizure-induced vascular endothelial growth factor (VEGF) type 2 receptor (VEGFR-2) pathway activation weakens TJs, inducing vasodilatation and increasing vascular permeability and subsequent brain injury. The present study focused on investigating the expression levels of VEGF-related (VEGF-A and VEGFR-2) and TJ-related proteins (claudin-5, occludin and ZO-1) in the neocortical microvasculature of patients with drug-resistant temporal lobe epilepsy (TLE). The results obtained from hippocampal sclerosis TLE (HS-TLE) patients were compared with those obtained from patients with TLE secondary to lesions (lesion-TLE) and autopsy samples. The Western blotting and immunofluorescence results showed that VEGF-A and VEGFR-2 protein expression levels were increased in HS-TLE and lesion-TLE patients compared to autopsy group. On the other hand, claudin-5 expression was higher in HS-TLE patients and lesion-TLE patients than autopsies. The expression level of occludin and ZO-1 was decreased in HS-TLE patients. Our study described modifications to the integrity of the BBB that may contribute to the pathogenesis of TLE, in which the VEGF system may play an important role. We demonstrated that the same modifications were present in both HS-TLE and lesion-TLE patients, which suggests that seizures modify these systems and that they are not associated with the establishment of epilepsy.


Assuntos
Barreira Hematoencefálica/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Microvasos/metabolismo , Neocórtex/irrigação sanguínea , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adolescente , Adulto , Barreira Hematoencefálica/patologia , Claudina-5/metabolismo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia Resistente a Medicamentos/patologia , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Masculino , Microvasos/patologia , Pessoa de Meia-Idade , Ocludina/metabolismo , Transdução de Sinais , Junções Íntimas/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem , Proteína da Zônula de Oclusão-1/metabolismo
14.
Curr Protoc Immunol ; 130(1): e101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32716613

RESUMO

In vitro culture models of the blood-brain barrier (BBB) provide a useful platform to test the mechanisms of cellular infiltration and pathogen dissemination into the central nervous system (CNS). We present an in vitro mouse model of the BBB to test Mycobacterium tuberculosis (Mtb) dissemination across brain endothelial cells. One-third of the global population is infected with Mtb, and in 1%-2% of cases bacteria invade the CNS through a largely unknown process. The "Trojan horse" theory supports the role of a cellular carrier that engulfs bacteria and carries them to the brain without being recognized. We present for the first time a protocol for an in vitro BBB-granuloma model that supports the Trojan horse mechanism of Mtb dissemination into the CNS. Handling of bacterial cultures, in vivo and in vitro infections, isolation of primary astroglial and endothelial cells, and assembly of the in vitro BBB model is presented. These techniques can be used to analyze the interaction of adaptive and innate immune system cells with brain endothelial cells, cellular transmigration, BBB morphological and functional changes, and methods of bacterial dissemination. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of primary mouse brain astrocytes and endothelial cells Basic Protocol 2: Isolation of primary mouse bone marrow-derived dendritic cells Support Protocol 1: Validation of dendritic cell purity by flow cytometry Basic Protocol 3: Isolation of primary mouse peripheral blood mononuclear cells Support Protocol 2: Isolation of primary mouse spleen cells Support Protocol 3: Purification and validation of CD4+ T cells from PBMCs and spleen cells Basic Protocol 4: Isolation of liver granuloma supernatant and determination of organ load Support Protocol 4: In vivo and in vitro infection with mycobacteria Basic Protocol 5: Assembly of the BBB co-culture model Basic Protocol 6: Assembly of the combined in vitro granuloma and BBB model.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Modelos Animais de Doenças , Mycobacterium tuberculosis/imunologia , Tuberculoma/etiologia , Tuberculoma/metabolismo , Tuberculose do Sistema Nervoso Central/etiologia , Tuberculose do Sistema Nervoso Central/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/metabolismo , Barreira Hematoencefálica/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/microbiologia , Encéfalo/patologia , Técnicas de Cultura de Células , Separação Celular/métodos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunofenotipagem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Tuberculoma/patologia , Tuberculose do Sistema Nervoso Central/patologia
15.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32512832

RESUMO

Clinical and experimental results with inhaled sodium bicarbonate as an adjuvant therapy in cystic fibrosis (CF) are promising due to its mucolytic and bacteriostatic properties, but its direct effect has not been studied on respiratory epithelial cells. Our aim was to establish and characterize co-culture models of human CF bronchial epithelial (CFBE) cell lines expressing a wild-type (WT) or mutant (deltaF508) CF transmembrane conductance regulator (CFTR) channel with human vascular endothelial cells and investigate the effects of bicarbonate. Vascular endothelial cells induced better barrier properties in CFBE cells as reflected by the higher resistance and lower permeability values. Activation of CFTR by cAMP decreased the electrical resistance in WT but not in mutant CFBE cell layers confirming the presence and absence of functional channels, respectively. Sodium bicarbonate (100 mM) was well-tolerated by CFBE cells: it slightly reduced the impedance of WT but not that of the mutant CFBE cells. Sodium bicarbonate significantly decreased the more-alkaline intracellular pH of the mutant CFBE cells, while the barrier properties of the models were only minimally changed. These observations indicate that sodium bicarbonate is beneficial to deltaF508-CFTR expressing CFBE cells. Thus, sodium bicarbonate may have a direct therapeutic effect on the bronchial epithelium.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Mutação , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Bicarbonato de Sódio/farmacologia , Biomarcadores , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Mucosa Respiratória/patologia , Transdução de Sinais , Bicarbonato de Sódio/uso terapêutico , Junções Íntimas/metabolismo
16.
Brain Behav Immun ; 89: 118-132, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485292

RESUMO

Sleep loss in the rat increases blood-brain barrier permeability to circulating molecules by disrupting interendothelial tight junctions. Despite the description of the ultrastructure of cerebral microvessels and the evidence of an apparent pericyte detachment from capillary wall in sleep restricted rats the effect of sleep loss on pericytes is unknown. Here we characterized the interactions between pericytes and brain endothelial cells after sleep loss using male Wistar rats. Animals were sleep-restricted 20 h daily with 4 h sleep recovery for 10 days. At the end of the sleep restriction, brain microvessels (MVs) were isolated from cerebral cortex and hippocampus and processed for Western blot and immunocytochemistry to evaluate markers of pericyte-endothelial cell interaction (connexin 43, PDGFR-ß), tight junction proteins, and proinflammatory mediator proteins (MMP9, A2A adenosine receptor, CD73, NFκB). Sleep restriction reduced PDGFR-ß and connexin 43 expression in MVs; in addition, scanning electron microscopy micrographs showed that pericytes were detached from capillary walls, but did not undergo apoptosis (as depicted by a reduced active caspase-3 expression). Sleep restriction also decreased tight junction protein expression in MVs and increased BBB permeability to low- and high-molecular weight tracers in in vivo permeability assays. Those alterations seemed to depend on a low-grade inflammatory status as reflected by the increased expression of phosphorylated NFκB and A2A adenosine receptor in brain endothelial cells from the sleep-restricted rats. Our data show that pericyte-brain endothelial cell interaction is altered by sleep restriction; this evidence is essential to understand the role of sleep in regulating blood-brain barrier function.


Assuntos
Barreira Hematoencefálica , Pericitos , Animais , Encéfalo , Comunicação Celular , Células Endoteliais , Masculino , Ratos , Ratos Wistar , Sono , Junções Íntimas
17.
Adv Sci (Weinh) ; 7(4): 1902621, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099761

RESUMO

There is a pressing need to develop ways to deliver therapeutic macromolecules to their intracellular targets. Certain viral and bacterial proteins are readily internalized in functional form through lipid raft-mediated/caveolar endocytosis, but mimicking this process with protein cargoes at therapeutically relevant concentrations is a great challenge. Targeting ganglioside GM1 in the caveolar pits triggers endocytosis. A pentapeptide sequence WYKYW is presented, which specifically captures the glycan moiety of GM1 (K D = 24 nm). The WYKYW-tag facilitates the GM1-dependent endocytosis of proteins in which the cargo-loaded caveosomes do not fuse with lysosomes. A structurally intact immunoglobulin G complex (580 kDa) is successfully delivered into live HeLa cells at extracellular concentrations ranging from 20 to 160 nm, and escape of the cargo proteins to the cytosol is observed. The short peptidic WYKYW-tag is an advantageous endocytosis routing sequence for lipid raft-mediated/caveolar cell delivery of therapeutic macromolecules, especially for cancer cells that overexpress GM1.

18.
Cell Mol Neurobiol ; 40(1): 113-121, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31414300

RESUMO

Metastasis of lung cancer to the brain is associated with poor outcomes and limited therapeutic options. The blood-brain barrier (BBB) plays a major role in brain metastasis. However, little is known about the role of pericytes in brain metastasis formation. This study aimed to reveal the interaction between pericytes and cancer cells. We established in vitro BBB models with rat primary cultured BBB-related cells (endothelial cells, astrocytes, and pericytes) and investigated the relationship between BBB-related cells and metastatic cancer cell lines. We observed a significant decrease in transendothelial electrical resistance with metastatic cancer cells in monolayer and coculture models with astrocytes. In contrast, the coculture model with pericytes showed inhibition of the decrease in transendothelial electrical resistance with metastatic cancer cells. In addition, the expression of tight junction protein was preserved only in the coculture model with pericytes. The conditioned medium of pericytes with metastatic cancer cells suppressed the proliferation of the cancer cells significantly. This study revealed that brain pericytes are the major regulators of the resistance of the BBB to lung cancer metastasis to the brain. Pericytes exert an anti-metastatic effect and thus have potential for the preventive treatment of brain metastasis.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Pulmonares/patologia , Pericitos/patologia , Células A549 , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Impedância Elétrica , Humanos , Pericitos/efeitos dos fármacos , Ratos , Proteínas de Junções Íntimas/metabolismo
19.
J Ethnopharmacol ; 247: 112253, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31562952

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The medicinal properties of grapes (Vitis vinifera L.) are well known since ancient times. Ethnobotanical grape preparations, like the Ayurvedic Darakchasava are used as cardiotonic and for the treatment of cardiovascular diseases. Dried grape products are also applied in Iranian traditional medicine for memory problems, which are linked to the pathology of brain microvessels, a special part of the cardiovascular system. The anti-inflammatory and protective effects of these traditional preparations on the cardiovascular system are related to their bioactive phenolic compounds. AIM OF THE STUDY: The blood-brain barrier (BBB), formed by brain capillaries, is not only involved in inflammatory and other diseases of the central nervous system, but also in many systemic diseases with an inflammatory component. Dietary obesity is a systemic chronic inflammatory condition in which the peripheral and central vascular system is affected. Among the cerebrovascular changes in obesity defective leptin transport across the BBB related to central leptin resistance is observed. Our aim was to study the protective effects of grape phenolic compounds epicatechin (EC), gallic acid (GA) and resveratrol (RSV) and grape-seed proanthocyanidin-rich extract (GSPE) on a cytokine-induced vascular endothelial inflammation model. Using a culture model of the BBB we investigated cytokine-induced endothelial damage and changes in the expression of leptin receptors and leptin transfer. MATERIALS AND METHODS: For the BBB model, primary cultures of rat brain endothelial cells, glial cells and pericytes were used in co-culture. Cells were treated by tumor necrosis factor-α (TNF-α) and interleukin-1 ß (IL-1ß) (10 ng/ml each) to induce damage. Cell toxicity was evaluated by the measurement of impedance. The expression of leptin receptors was assessed by RT-qPCR and western blot. The production of reactive oxygen species (ROS) and nitric oxide (NO) were detected by fluorescent probes. RESULTS: GSPE (10 µg/ml), EC (10 µM), GA (1 µM) or RSV (10 µM) did not change the viability of brain endothelial cells. The gene expression of the short leptin receptor isoform, Ob-Ra, was up-regulated by GSPE, EC and RSV, while the mRNA levels of Lrp2 and clusterin, clu/ApoJ were not affected. The tested compounds did not change the expression of the long leptin receptor isoform, Ob-Rb. RSV protected against the cytokine-induced increase in albumin permeability of the BBB model. GSPE and EC exerted an antioxidant effect and GSPE increased NO both alone and in the presence of cytokines. The cytokine-induced nuclear translocation of transcription factor NF-κB was blocked by GSPE, GA and RSV. Cytokines increased the mRNA expression of Lrp2 which was inhibited by EC. RSV increased Ob-Ra and Clu in the presence of cytokines. Cytokines elevated leptin transfer across the BBB model, which was not modified by GSPE or RSV. CONCLUSION: Our results obtained on cell culture models confirm that natural grape compounds protect vascular endothelial cells against inflammatory damage in accordance with the ethnopharmacological use of grape preparations in cardiovascular diseases. Furthermore, grape compounds and GSPE, by exerting a beneficial effect on the BBB, may also be considered in the treatment of obesity after validation in clinical trials.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Inflamação/tratamento farmacológico , Proantocianidinas/farmacologia , Vitis/química , Animais , Animais Recém-Nascidos , Astrócitos , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/imunologia , Catequina/farmacologia , Células Cultivadas , Citocinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/imunologia , Etnofarmacologia , Ácido Gálico/farmacologia , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/uso terapêutico , Humanos , Inflamação/imunologia , Inflamação/patologia , Leptina/imunologia , Leptina/metabolismo , Ayurveda/métodos , Cultura Primária de Células , Proantocianidinas/química , Proantocianidinas/uso terapêutico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptores para Leptina/metabolismo , Resveratrol/farmacologia
20.
Biochim Biophys Acta Biomembr ; 1861(9): 1579-1591, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301276

RESUMO

The surface charge of brain endothelial cells forming the blood-brain barrier (BBB) is highly negative due to phospholipids in the plasma membrane and the glycocalyx. This negative charge is an important element of the defense systems of the BBB. Lidocaine, a cationic and lipophilic molecule which has anaesthetic and antiarrhytmic properties, exerts its actions by interacting with lipid membranes. Lidocaine when administered intravenously acts on vascular endothelial cells, but its direct effect on brain endothelial cells has not yet been studied. Our aim was to measure the effect of lidocaine on the charge of biological membranes and the barrier function of brain endothelial cells. We used the simplified membrane model, the bacteriorhodopsin (bR) containing purple membrane of Halobacterium salinarum and culture models of the BBB. We found that lidocaine turns the negative surface charge of purple membrane more positive and restores the function of the proton pump bR. Lidocaine also changed the zeta potential of brain endothelial cells in the same way. Short-term lidocaine treatment at a 10 µM therapeutically relevant concentration did not cause major BBB barrier dysfunction, substantial change in cell morphology or P-glycoprotein efflux pump inhibition. Lidocaine treatment decreased the flux of a cationic lipophilic molecule across the cell layer, but had no effect on the penetration of hydrophilic neutral or negatively charged markers. Our observations help to understand the biophysical background of the effect of lidocaine on biological membranes and draws the attention to the interaction of cationic drug molecules at the level of the BBB.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lidocaína/metabolismo , Lidocaína/farmacologia , Animais , Astrócitos/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células Endoteliais , Feminino , Humanos , Masculino , Células PC-3 , Permeabilidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA