Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904697

RESUMO

The ion-sensitive field-effect transistor is a well-established electronic device typically used for pH sensing. The usability of the device for detecting other biomarkers in easily accessible biologic fluids, with dynamic range and resolution compliant with high-impact medical applications, is still an open research topic. Here, we report on an ion-sensitive field-effect transistor that is able to detect the presence of chloride ions in sweat with a limit-of-detection of 0.004 mol/m3. The device is intended for supporting the diagnosis of cystic fibrosis, and it has been designed considering two adjacent domains, namely the semiconductor and the electrolyte containing the ions of interest, by using the finite element method, which models the experimental reality with great accuracy. According to the literature explaining the chemical reactions that take place between the gate oxide and the electrolytic solution, we have concluded that anions directly interact with the hydroxyl surface groups and replace protons previously adsorbed from the surface. The achieved results confirm that such a device can be used to replace the traditional sweat test in the diagnosis and management of cystic fibrosis. In fact, the reported technology is easy-to-use, cost-effective, and non-invasive, leading to earlier and more accurate diagnoses.


Assuntos
Técnicas Biossensoriais , Fibrose Cística , Humanos , Cloretos/química , Sudorese , Potenciometria
2.
Biosensors (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34821665

RESUMO

The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.


Assuntos
Biópsia Líquida , Neoplasias , Análise Espectral Raman , Biomarcadores Tumorais/análise , Humanos , Neoplasias/diagnóstico por imagem , Propriedades de Superfície
3.
Laser Photon Rev ; 15(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35360260

RESUMO

The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.

4.
Opt Express ; 27(17): 24434-24444, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510332

RESUMO

Photonic ring resonators can be considered building blocks of new concept satellite payloads for implementing several functions, such as filtering and sensing. In particular, the use of a high Q-factor ring resonator as sensing element into a Resonant Micro Optic Gyroscope (RMOG), provides a remarkable improvement of the performance with respect to the competitive technologies. To qualify a ring resonator for Space applications, the radiation effects on it in the Space must be carefully evaluated. Here, we investigate the effects of gamma radiation on a high Q InGaAsP/InP ring resonator, for the first time, to our knowledge. The ring resonator under study has a footprint of about 530 mm2 and it is based on a InGaAsP/InP rib waveguide, with a width of 2 µm and a thickness of 0.3 µm, formed on a 0.7 µm thick slab layer on an InP substrate 625 µm thick. For a total dose of about 320 krad Co60 gamma irradiation, a mean variation of about 13% and 4% was measured for Q and extinction ratio (ER), respectively, with respect to the values before irradiation (Q = 1.36 × 106, ER = 6.24 dB). Furthermore, the resonance peak red-shifts with a linear behaviour was observed increasing the total dose of the absorbed radiation, with a maximum resonance detuning of about 810 pm. These non-significant effects of a quite high gamma radiation dose confirm the potential of high-Q InP-based ring resonators into Space systems or subsystems.

5.
Appl Spectrosc ; 71(3): 367-390, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28287314

RESUMO

The ability to manipulate and sense biological molecules is important in many life science domains, such as single-molecule biophysics, the development of new drugs and cancer detection. Although the manipulation of biological matter at the nanoscale continues to be a challenge, several types of nanotweezers based on different technologies have recently been demonstrated to address this challenge. In particular, photonic and plasmonic nanotweezers are attracting a strong research effort especially because they are efficient and stable, they offer fast response time, and avoid any direct physical contact with the target object to be trapped, thus preventing its disruption or damage. In this paper, we critically review photonic and plasmonic resonant technologies for biomolecule trapping, manipulation, and sensing at the nanoscale, with a special emphasis on hybrid photonic/plasmonic nanodevices allowing a very strong light-matter interaction. The state-of-the-art of competing technologies, e.g., electronic, magnetic, acoustic and carbon nanotube-based nanotweezers, and a description of their applications are also included.

6.
Opt Express ; 23(22): 28593-604, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26561129

RESUMO

A multi-analyte biosensing platform with ultra-high resolution ( = 0.2 ng/mL),-which is appropriate for the detection in the human serum of a wide range of biomarkers, e.g. those allowing the lung cancer early diagnosis, has been designed. The platform is based on a new configuration of planar ring resonator. The very strong light-matter interaction enabled by the micro-cavity allows a record limit-of-detection of 0.06 pg/mm(2), five times better than the state-of-the-art. The device with footprint = 2,200 µm(2) for each ring, due to its features, has the potential to be integrated in lab-on-chip microsystems for large-scale screenings of people with high risk of developing cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA