Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Prod Rep ; 39(3): 453-459, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586117

RESUMO

The first machineries for non-ribosomal peptide (NRP) biosynthesis were uncovered over 50 years ago, and the dissection of these megasynthetases set the stage for the nomenclature system that has been used ever since. Although the number of exceptions to the canonical biosynthetic pathways has surged in the intervening years, the NRP synthetase (NRPS) classification system has remained relatively unchanged. This has led to the exclusion of many biosynthetic pathways whose biosynthetic machineries violate the classical rules for NRP assembly, and ultimately to a rupture in the field of NRP biosynthesis. In an attempt to unify the classification of NRP pathways and to facilitate the communication within the research field, we propose a revised framework for grouping ribosome-independent peptide biosynthetic pathways based on recognizable commonalities in their biosynthetic logic. Importantly, the framework can be further refined as needed.


Assuntos
Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases , Vias Biossintéticas , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(16): 8850-8858, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32265283

RESUMO

Closthioamide (CTA) is a rare example of a thioamide-containing nonribosomal peptide and is one of only a handful of secondary metabolites described from obligately anaerobic bacteria. Although the biosynthetic gene cluster responsible for CTA production and the thioamide synthetase that catalyzes sulfur incorporation were recently discovered, the logic for peptide backbone assembly has remained a mystery. Here, through the use of in vitro biochemical assays, we demonstrate that the amide backbone of CTA is assembled in an unusual thiotemplated pathway involving the cooperation of a transacylating member of the papain-like cysteine protease family and an iteratively acting ATP-grasp protein. Using the ATP-grasp protein as a bioinformatic handle, we identified hundreds of such thiotemplated yet nonribosomal peptide synthetase (NRPS)-independent biosynthetic gene clusters across diverse bacterial phyla. The data presented herein not only clarify the pathway for the biosynthesis of CTA, but also provide a foundation for the discovery of additional secondary metabolites produced by noncanonical biosynthetic pathways.


Assuntos
Antibacterianos/metabolismo , Bactérias Anaeróbias/enzimologia , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Biossíntese de Peptídeos Independentes de Ácido Nucleico/genética , Tioamidas/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias Anaeróbias/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Vias Biossintéticas/genética , Biologia Computacional , Cisteína Endopeptidases/genética , Genes Bacterianos , Família Multigênica , Metabolismo Secundário/genética
3.
Angew Chem Int Ed Engl ; 58(37): 13014-13018, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276268

RESUMO

Thioamide-containing nonribosomal peptides (NRPs) are exceedingly rare. Recently the biosynthetic gene cluster for the thioamidated NRP antibiotic closthioamide (CTA) was reported, however, the enzyme responsible for and the timing of thioamide formation remained enigmatic. Here, genome editing, biochemical assays, and mutational studies are used to demonstrate that an Fe-S cluster containing member of the adenine nucleotide α-hydrolase protein superfamily (CtaC) is responsible for sulfur incorporation during CTA biosynthesis. However, unlike all previously characterized members, CtaC functions in a thiotemplated manner. In addition to prompting a revision of the CTA biosynthetic pathway, the reconstitution of CtaC provides the first example of a NRP thioamide synthetase. Finally, CtaC is used as a bioinformatic handle to demonstrate that thioamidated NRP biosynthetic gene clusters are more widespread than previously appreciated.


Assuntos
Antibacterianos/metabolismo , Vias Biossintéticas , Clostridiales/metabolismo , Peptídeos/metabolismo , Tioamidas/metabolismo , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridiales/química , Clostridiales/genética , Genes Bacterianos , Família Multigênica , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Peptídeos/química , Peptídeos/genética , Tioamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA