Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 204(4): 775-787, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900335

RESUMO

Immunogenic cell death (ICD) occurs when a dying cell releases cytokines and damage-associated molecular patterns, acting as adjuvants, and expresses Ags that induce a specific antitumor immune response. ICD is studied mainly in the context of regulated cell death pathways, especially caspase-mediated apoptosis marked by endoplasmic reticulum stress and calreticulin exposure and, more recently, also in relation to receptor-interacting protein kinase-driven necroptosis, whereas unregulated cell death like accidental necrosis is nonimmunogenic. Importantly, the murine cancer cell lines used in ICD studies often express virally derived peptides that are recognized by the immune system as tumor-associated Ags. However, it is unknown how different cell death pathways may affect neoepitope cross-presentation and Ag recognition of cancer cells. We used a prophylactic tumor vaccination model and observed that both apoptotic and necroptotic colon carcinoma CT26 cells efficiently immunized mice against challenge with a breast cancer cell line that expresses the same immunodominant tumor Ag, AH1, but only necroptotic CT26 cells would mount an immune response against CT26-specific neoepitopes. By CRISPR/Cas9 genome editing, we knocked out AH1 and saw that only necroptotic CT26 cells were still able to protect mice against tumor challenge. Hence, in this study, we show that endogenous AH1 tumor Ag expression can mask the strength of immunogenicity induced by different cell death pathways and that upon knockout of AH1, necroptosis was more immunogenic than apoptosis in a prophylactic tumor vaccination model. This work highlights necroptosis as a possible preferred ICD form over apoptosis in the treatment of cancer.


Assuntos
Antígenos de Neoplasias/imunologia , Apoptose/imunologia , Epitopos Imunodominantes/imunologia , Necroptose/imunologia , Neoplasias Experimentais/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
2.
Cell Rep ; 15(2): 274-87, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27050509

RESUMO

Successful immunogenic apoptosis in experimental cancer therapy depends on the induction of strong host anti-tumor responses. Given that tumors are often resistant to apoptosis, it is important to identify alternative molecular mechanisms that elicit immunogenic cell death. We have developed a genetic model in which direct dimerization of FADD combined with inducible expression of RIPK3 promotes necroptosis. We report that necroptotic cancer cells release damage-associated molecular patterns and promote maturation of dendritic cells, the cross-priming of cytotoxic T cells, and the production of IFN-γ in response to tumor antigen stimulation. Using both FADD-dependent and FADD-independent RIPK3 induction systems, we demonstrate the efficient vaccination potential of immunogenic necroptotic cells. Our study broadens the current concept of immunogenic cell death and opens doors for the development of new strategies in cancer therapy.


Assuntos
Antineoplásicos/imunologia , Apoptose , Imunidade , Neoplasias/imunologia , Vacinação , Alarminas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocinas/metabolismo , Apresentação Cruzada/efeitos dos fármacos , Apresentação Cruzada/imunologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Ligantes , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Necrose , Fagocitose/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Tetraciclina/farmacologia
3.
BMC Biotechnol ; 10: 48, 2010 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-20587060

RESUMO

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the pig industry worldwide. In vivo, the virus infects a subpopulation of tissue macrophages. In vitro, PRRSV only replicates in primary pig macrophages and African green monkey kidney derived cells, such as Marc-145. The latter is currently used for vaccine production. However, since virus entry in Marc-145 cells is different compared to entry in primary macrophages, specific epitopes associated with virus entry could potentially alter upon growth on Marc-145 cells. To avoid this, we constructed CHO and PK15 cell lines recombinantly expressing the PRRSV receptors involved in virus entry into macrophages, sialoadhesin (Sn) and CD163 (CHOSn-CD163 and PK15Sn-CD163) and evaluated their potential for production of PRRSV. RESULTS: Detailed analysis of PRRSV infection revealed that LV and VR-2332 virus particles could attach to and internalize into the CHOSn-CD163 and PK15Sn-CD163 cells. Initially, this occurred less efficiently for macrophage grown virus than for Marc-145 grown virus. Upon internalization, disassembly of the virus particles was observed. The two cell lines could be infected with PRRSV strains LV and VR-2332. However, it was observed that Marc-145 grown virus infected the cells more efficiently than macrophage grown virus. If the cells were treated with neuraminidase to remove cis-acting sialic acids that hinder the interaction of the virus with Sn, the amount of infected cells with macrophage grown virus increased. Comparison of both cell lines showed that the PK15Sn-CD163 cell line gave in general better results than the CHOSn-CD163 cell line. Only 2 out of 5 PRRSV strains replicated well in CHOSn-CD163 cells. Furthermore, the virus titer of all 5 PRRSV strains produced after passaging in PK15Sn-CD163 cells was similar to the virus titer of those strains produced in Marc-145 cells. Analysis of the sequence of the structural proteins of original virus and virus grown for 5 passages on PK15Sn-CD163 cells showed either no amino acid (aa) changes (VR-2332 and 07V063), one aa (LV), two aa (08V194) or three aa (08V204) changes. None of these changes are situated in known neutralizing epitopes. CONCLUSIONS: A PRRSV susceptible cell line was constructed that can grow virus to similar levels compared to currently available cell lines. Mutations induced by growth on this cell lines were either absent or minimal and located outside known neutralizing epitopes. Together, the results show that this cell line can be used to produce vaccine virus and for PRRSV virus isolation.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Linhagem Celular , Glicoproteínas de Membrana/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores de Superfície Celular/genética , Receptores Imunológicos/genética , Cultura de Vírus , Animais , Células CHO , Técnicas de Cultura de Células , Cricetinae , Cricetulus , Macrófagos/virologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Suínos , Transfecção
4.
Vet Res ; 40(6): 62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19674538

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes severe economic losses in the pig industry worldwide. Currently, vaccines based on inactivated PRRSV provide limited protection of pigs against infection, most likely because viral epitopes associated with the induction of neutralizing antibodies are not or poorly conserved during inactivation. To analyze the effect of inactivation procedures on the interaction of PRRSV with receptors involved in virus entry, a new assay was set up in this study. Viral entry-associated domains are most likely important for the induction of neutralizing antibodies, since neutralizing antibodies block interaction of PRRSV with cellular receptors. To investigate the interaction of PRRSV with the cellular receptors upon different inactivation procedures, attachment to and internalization of inactivated PRRSV into macrophages were monitored. AT-2 could not inactivate PRRSV completely and is therefore not useful for vaccine development. PRRSV inactivated with ultraviolet light, binary ethyleneimine and gamma irradiation, which all mainly have an effect at the genomic level, showed no difference compared to control live virus at all levels of virus entry, whereas PRRSV treated with formaldehyde, glutaraldehyde and pH changes, which all have a modifying effect on proteins, was not able to internalize into macrophages anymore. These results suggest that inactivation with methods with a main effect on the viral genome preserve PRRSV entry-associated domains and are useful for future development of an effective inactivated vaccine against PRRSV. Although PRRSV incubation at 37 degrees C can completely inactivate PRRSV with preservation of entry-associated domains, this method is not recommended for vaccine development, since the mechanism is yet unknown.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Vacinas de Produtos Inativados/imunologia , Proteínas Virais/genética , Vacinas Virais/imunologia , Inativação de Vírus , Internalização do Vírus , Animais , Linhagem Celular , Macrófagos/virologia , Estrutura Terciária de Proteína , Suínos , Proteínas Virais/química , Replicação Viral
5.
J Virol ; 81(17): 9546-50, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17567703

RESUMO

The sialic acid-binding lectin sialoadhesin (Sn) is a macrophage-restricted receptor for porcine reproductive and respiratory syndrome virus (PRRSV). To investigate the importance of pSn sialic acid-binding activity for PRRSV infection, an R(116)-to-E mutation was introduced in the predicted sialic acid-binding domain of pSn, resulting in a mutant, pSn(RE), that could not bind sialic acids. PSn, but not pSn(RE), allowed PRRSV binding and internalization. These data show that the sialic acid-binding activity of pSn is essential for PRRSV attachment to pSn and thus identifies the variable, N-terminal domain of Sn as a PRRSV binding domain.


Assuntos
Macrófagos/virologia , Glicoproteínas de Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Células CHO , Cricetinae , Cricetulus , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Virais/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA