Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(7): ar76, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126397

RESUMO

During mitosis, kinetochore-microtubule attachments are monitored by a molecular surveillance system known as the spindle assembly checkpoint. The prevailing model posits that dynein evicts checkpoint proteins (e.g., Mad1, Mad2) from stably attached kinetochores by transporting them away from kinetochores, thus contributing to checkpoint silencing. However, the mechanism by which dynein performs this function, and its precise role in checkpoint silencing remain unresolved. Here, we find that dynein's role in checkpoint silencing is restricted to evicting checkpoint effectors from the fibrous corona, and not the outer kinetochore. Dynein evicts these molecules from the corona in a manner that does not require stable, end-on microtubule attachments. Thus, by disassembling the corona through indiscriminate microtubule encounters, dynein primes the checkpoint signaling apparatus so it can respond to stable end-on microtubule attachments and permit cells to progress through mitosis. Accordingly, we find that dynein function in checkpoint silencing becomes largely dispensable in cells in which checkpoint effectors are excluded from the corona.


Assuntos
Dineínas , Cinetocoros , Cinetocoros/metabolismo , Dineínas/metabolismo , Proteínas/metabolismo , Microtúbulos/metabolismo , Mitose , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(41): e2208255119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191188

RESUMO

Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC). BubR1, a factor involved in both processes, was identified as a cancer dependency and therapeutic target in multiple tumor types; however, it remains unclear what specific oncogenic pressures drive this enhanced dependency on BubR1 and whether it arises from BubR1's regulation of the SAC or error-correction pathways. Here, we use a genetically controlled transformation model and glioblastoma tumor isolates to show that constitutive signaling by RAS or MAPK is necessary for cancer-specific BubR1 vulnerability. The MAPK pathway enzymatically hyperstimulates a network of kinetochore kinases that compromises chromosome segregation, rendering cells more dependent on two BubR1 activities: counteracting excessive kinetochore-microtubule turnover for error correction and maintaining the SAC. This work expands our understanding of how chromosome segregation adapts to different cellular states and reveals an oncogenic trigger of a cancer-specific defect.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Aneuploidia , Carcinogênese/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/genética , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/metabolismo
3.
Mol Biol Cell ; 31(21): 2363-2378, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816614

RESUMO

Nuclear envelope proteins influence cell cytoarchitecure by poorly understood mechanisms. Here we show that small interfering RNA-mediated silencing of lamin A/C (LMNA) promotes contrasting stress fiber assembly and disassembly in individual cells and within cell populations. We show that LMNA-deficient cells have elevated myosin-II bipolar filament accumulations, irregular formation of actin comet tails and podosome-like adhesions, increased steady state nuclear localization of the mechanosensitive transcription factors MKL1 and YAP, and induced expression of some MKL1/serum response factor-regulated genes such as that encoding myosin-IIA (MYH9). Our studies utilizing live cell imaging and pharmacological inhibition of myosin-II support a mechanism of deregulated myosin-II self-organizing activity at the nexus of divergent actin cytoskeletal aberrations resulting from LMNA loss. In light of our results, we propose a model of how the nucleus, via linkage to the cytoplasmic actomyosin network, may act to control myosin-II contractile behavior through both mechanical and transcriptional feedback mechanisms.


Assuntos
Citoesqueleto de Actina/metabolismo , Lamina Tipo A/metabolismo , Miosina Tipo II/metabolismo , Membrana Nuclear/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Células HeLa , Humanos , Lamina Tipo A/deficiência , Miosina Tipo II/genética
4.
J Cell Biol ; 217(1): 163-177, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187526

RESUMO

Precise regulation of kinetochore-microtubule attachments is essential for successful chromosome segregation. Central to this regulation is Aurora B kinase, which phosphorylates kinetochore substrates to promote microtubule turnover. A critical target of Aurora B is the N-terminal "tail" domain of Hec1, which is a component of the NDC80 complex, a force-transducing link between kinetochores and microtubules. Although Aurora B is regarded as the "master regulator" of kinetochore-microtubule attachment, other mitotic kinases likely contribute to Hec1 phosphorylation. In this study, we demonstrate that Aurora A kinase regulates kinetochore-microtubule dynamics of metaphase chromosomes, and we identify Hec1 S69, a previously uncharacterized phosphorylation target site in the Hec1 tail, as a critical Aurora A substrate for this regulation. Additionally, we demonstrate that Aurora A kinase associates with inner centromere protein (INCENP) during mitosis and that INCENP is competent to drive accumulation of the kinase to the centromere region of mitotic chromosomes. These findings reveal that both Aurora A and B contribute to kinetochore-microtubule attachment dynamics, and they uncover an unexpected role for Aurora A in late mitosis.


Assuntos
Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Centrômero/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Metáfase/fisiologia , Fosforilação , Potoroidae , Ligação Proteica/fisiologia , Fuso Acromático/metabolismo
5.
Cancer Res ; 77(20): 5518-5529, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28855212

RESUMO

Glioblastoma multiforme (GBM) remains a mainly incurable disease in desperate need of more effective treatments. In this study, we develop evidence that the mitotic spindle checkpoint molecule BUB1B may offer a predictive marker for aggressiveness and effective drug response. A subset of GBM tumor isolates requires BUB1B to suppress lethal kinetochore-microtubule attachment defects. Using gene expression data from GBM stem-like cells, astrocytes, and neural progenitor cells that are sensitive or resistant to BUB1B inhibition, we created a computational framework to predict sensitivity to BUB1B inhibition. Applying this framework to tumor expression data from patients, we stratified tumors into BUB1B-sensitive (BUB1BS) or BUB1B-resistant (BUB1BR) subtypes. Through this effort, we found that BUB1BS patients have a significantly worse prognosis regardless of tumor development subtype (i.e., classical, mesenchymal, neural, proneural). Functional genomic profiling of BUB1BR versus BUB1BS isolates revealed a differential reliance of genes enriched in the BUB1BS classifier, including those involved in mitotic cell cycle, microtubule organization, and chromosome segregation. By comparing drug sensitivity profiles, we predicted BUB1BS cells to be more sensitive to type I and II topoisomerase inhibitors, Raf inhibitors, and other drugs, and experimentally validated some of these predictions. Taken together, the results show that our BUB1BR/S classification of GBM tumors can predict clinical course and sensitivity to drug treatment. Cancer Res; 77(20); 5518-29. ©2017 AACR.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Antineoplásicos Fitogênicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral/metabolismo , Etoposídeo/farmacologia , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Irinotecano , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética
6.
Mol Biol Cell ; 28(15): 2035-2041, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539402

RESUMO

Aneuploidy, a condition that results from unequal partitioning of chromosomes during mitosis, is a hallmark of many cancers, including those caused by human papillomaviruses (HPVs). E6 and E7 are the primary transforming proteins in HPV that drive tumor progression. In this study, we stably expressed E6 and E7 in noncancerous RPE1 cells and analyzed the specific mitotic defects that contribute to aneuploidy in each cell line. We find that E6 expression results in multiple chromosomes associated with one or both spindle poles, causing a significant mitotic delay. In most cells, the misaligned chromosomes eventually migrated to the spindle equator, leading to mitotic exit. In some cells, however, mitotic exit occurred in the presence of pole-associated chromosomes. We determined that this premature mitotic exit is due to defects in spindle assembly checkpoint (SAC) signaling, such that cells are unable to maintain a prolonged mitotic arrest in the presence of unaligned chromosomes. This SAC defect is caused in part by a loss of kinetochore-associated Mad2 in E6-expressing cells. Our results demonstrate that E6-expressing cells exhibit previously unappreciated mitotic defects that likely contribute to HPV-mediated cancer progression.


Assuntos
Transformação Celular Viral , Cromátides/metabolismo , Papillomavirus Humano 16/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Proteínas Repressoras/metabolismo , Polos do Fuso/metabolismo , Aneuploidia , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Humanos , Cinetocoros/metabolismo , Mitose , Proteínas E7 de Papillomavirus/metabolismo , Transdução de Sinais , Fuso Acromático/metabolismo , Polos do Fuso/fisiologia
7.
Sci Rep ; 7: 40953, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102353

RESUMO

Structural features of the nucleus including shape, size and deformability impact its function affecting normal cellular processes such as cell differentiation and pathological conditions such as tumor cell migration. Despite the fact that abnormal nuclear morphology has long been a defining characteristic for diseases such as cancer relatively little is known about the mechanisms that control normal nuclear architecture. Mounting evidence suggests close coupling between F-actin cytoskeletal organization and nuclear morphology however, mechanisms regulating this coupling are lacking. Here we identify that Cofilin/ADF-family F-actin remodeling proteins are essential for normal nuclear structure in different cell types. siRNA mediated silencing of Cofilin/ADF provokes striking nuclear defects including aberrant shapes, nuclear lamina disruption and reductions to peripheral heterochromatin. We provide evidence that these anomalies are primarily due to Rho kinase (ROCK) controlled excessive contractile myosin-II activity and not to elevated F-actin polymerization. Furthermore, we demonstrate a requirement for nuclear envelope LINC (linker of nucleoskeleton and cytoskeleton) complex proteins together with lamin A/C for nuclear aberrations induced by Cofilin/ADF loss. Our study elucidates a pivotal regulatory mechanism responsible for normal nuclear structure and which is expected to fundamentally influence nuclear function.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Forma do Núcleo Celular , Núcleo Celular/metabolismo , Miosina Tipo II/metabolismo , Linhagem Celular , Humanos , Mecanotransdução Celular , Quinases Associadas a rho/metabolismo
8.
Methods Mol Biol ; 1413: 147-68, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193848

RESUMO

Duplicated sister chromatids connect to the mitotic spindle through kinetochores, large proteinaceous structures built at sites of centromeric heterochromatin. Kinetochores are responsible for harnessing the forces generated by microtubule polymerization and depolymerization to power chromosome movements. The fidelity of chromosome segregation relies on proper kinetochore function, as precise regulation of the attachment between kinetochores and microtubules is essential to prevent mitotic errors, which are linked to the initiation and progression of cancer and the formation of birth defects (Godek et al., Nat Rev Mol Cell Biol 16(1):57-64, 2014; Ricke and van Deursen, Semin Cell Dev Biol 22(6):559-565, 2011; Holland and Cleveland, EMBO Rep 13(6):501-514, 2012). Here we describe assays to quantitatively measure kinetochore-microtubule attachment stability in cultured cells.


Assuntos
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Inativação Gênica , Humanos , Cinetocoros/química , Microscopia de Fluorescência , Microtúbulos/química , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , Multimerização Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Fuso Acromático/química , Fuso Acromático/metabolismo , Temperatura
9.
Dev Cell ; 36(5): 487-97, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26954544

RESUMO

Incorrect attachment of kinetochore microtubules is the leading cause of chromosome missegregation in cancers. The highly conserved chromosomal passenger complex (CPC), containing mitotic kinase Aurora B as a catalytic subunit, ensures faithful chromosome segregation through destabilizing incorrect microtubule attachments and promoting biorientation of chromosomes on the mitotic spindle. It is unknown whether CPC dysfunction affects chromosome segregation fidelity in cancers and, if so, how. Here, we show that heterochromatin protein 1 (HP1) is an essential CPC component required for full Aurora B activity. HP1 binding to the CPC becomes particularly important when Aurora B phosphorylates kinetochore targets to eliminate erroneous microtubule attachments. Remarkably, a reduced proportion of HP1 bound to CPC is widespread in cancers, which causes an impairment in Aurora B activity. These results indicate that HP1 is an essential modulator for CPC function and identify a molecular basis for chromosome segregation errors in cancer cells.


Assuntos
Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Aurora Quinase B/genética , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Humanos , Mitose/fisiologia , Fuso Acromático/metabolismo
10.
Clin Cancer Res ; 21(2): 233-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25104085

RESUMO

Kinetochores are large protein structures assembled on centromeric DNA during mitosis that bind to microtubules of the mitotic spindle to orchestrate and power chromosome movements. Deregulation of kinetochore-microtubule (KT-MT) attachments has been implicated in driving chromosome instability and cancer evolution; however, the nature and source of KT-MT attachment defects in cancer cells remain largely unknown. Here, we highlight recent findings suggesting that oncogene-driven changes in kinetochore regulation occur in glioblastoma multiforme (GBM) and possibly other cancers exhibiting chromosome instability, giving rise to novel therapeutic opportunities. In particular, we consider the GLE2p-binding sequence domains of BubR1 and the newly discovered BuGZ, two kinetochore-associated proteins, as candidate therapeutic targets for GBM.


Assuntos
Antineoplásicos/farmacologia , Cinetocoros/fisiologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Humanos , Cinetocoros/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular , Microtúbulos/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/patologia , Ligação Proteica
11.
Dev Cell ; 28(3): 282-94, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24462187

RESUMO

During mitosis, the spindle assembly checkpoint (SAC) monitors the attachment of kinetochores (KTs) to the plus ends of spindle microtubules (MTs) and prevents anaphase onset until chromosomes are aligned and KTs are under proper tension. Here, we identify a SAC component, BuGZ/ZNF207, from an RNAi viability screen in human glioblastoma multiforme (GBM) brain tumor stem cells. BuGZ binds to and stabilizes Bub3 during interphase and mitosis through a highly conserved GLE2p-binding sequence (GLEBS) domain. Inhibition of BuGZ results in loss of both Bub3 and its binding partner Bub1 from KTs, reduction of Bub1-dependent phosphorylation of centromeric histone H2A, attenuation of KT-based Aurora B kinase activity, and lethal chromosome congression defects in cancer cells. Phylogenetic analysis indicates that BuGZ orthologs are highly conserved among eukaryotes, but are conspicuously absent from budding and fission yeasts. These findings suggest that BuGZ has evolved to facilitate Bub3 activity and chromosome congression in higher eukaryotes.


Assuntos
Proteínas de Ciclo Celular/química , Cromossomos Humanos/genética , Glioblastoma/patologia , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/fisiologia , Dedos de Zinco/genética , Sequência de Aminoácidos , Animais , Aurora Quinase B/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Imunofluorescência , Glioblastoma/genética , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Immunoblotting , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mitose/fisiologia , Dados de Sequência Molecular , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosforilação , Filogenia , Proteínas de Ligação a Poli-ADP-Ribose , Estabilidade Proteica , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos
12.
Opt Express ; 17(22): 19644-55, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19997184

RESUMO

Double-helix point spread function photoactivation-localization microscopy allows three-dimensional (3D) superresolution imaging of objects smaller than the optical diffraction-limit. We demonstrate polarization sensitive detection with 3D super-localization of single-molecules and unveil 3D polarization specific characteristics of single-molecules within the intracellular structure of PtK1 cells expressing photoactivatable green fluorescent protein. The system modulates orthogonal polarization components of single-molecule emissions with a single spatial light modulator and detects them separately with a single detector. Information obtained from the two polarization channels demonstrates polarization based contrast in 3D superresolution imaging. Further, we show that the 3D information from the two channels can be optimally combined to yield up to 30% improvement in localization precision relative to a single polarization channel system.


Assuntos
Células Epiteliais/ultraestrutura , Aumento da Imagem/instrumentação , Imageamento Tridimensional/instrumentação , Microscopia de Fluorescência/instrumentação , Microscopia de Polarização/instrumentação , Tubulina (Proteína)/ultraestrutura , Animais , Células Cultivadas , Desenho Assistido por Computador , DNA/ultraestrutura , Desenho de Equipamento , Análise de Falha de Equipamento , Potoroidae , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Genes Dev ; 22(1): 91-105, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18086858

RESUMO

beta-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that beta-catenin is a component of interphase centrosomes and that stabilization of beta-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that beta-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, beta-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, beta-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of beta-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify beta-catenin as a component of the intercentrosomal linker and define a new function for beta-catenin as a key regulator of mitotic centrosome separation.


Assuntos
Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , beta Catenina/metabolismo , Animais , Proteínas do Domínio Armadillo/metabolismo , Células Cultivadas , Centrossomo/enzimologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Cães , Humanos , Interfase , Quinases Relacionadas a NIMA , Proteínas/análise , Proteínas/metabolismo , beta Catenina/análise , tRNA Metiltransferases
14.
J Cell Biol ; 159(4): 549-55, 2002 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-12438418

RESUMO

Identification of proteins that couple kinetochores to spindle microtubules is critical for understanding how accurate chromosome segregation is achieved in mitosis. Here we show that the protein hNuf2 specifically functions at kinetochores for stable microtubule attachment in HeLa cells. When hNuf2 is depleted by RNA interference, spindle formation occurs normally as cells enter mitosis, but kinetochores fail to form their attachments to spindle microtubules and cells block in prometaphase with an active spindle checkpoint. Kinetochores depleted of hNuf2 retain the microtubule motors CENP-E and cytoplasmic dynein, proteins previously implicated in recruiting kinetochore microtubules. Kinetochores also retain detectable levels of the spindle checkpoint proteins Mad2 and BubR1, as expected for activation of the spindle checkpoint by unattached kinetochores. In addition, the cell cycle block produced by hNuf2 depletion induces mitotic cells to undergo cell death. These data highlight a specific role for hNuf2 in kinetochore-microtubule attachment and suggest that hNuf2 is part of a molecular linker between the kinetochore attachment site and tubulin subunits within the lattice of attached plus ends.


Assuntos
Morte Celular/fisiologia , Proteínas Fúngicas/metabolismo , Células HeLa/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Nucleares/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Dineínas/metabolismo , Citometria de Fluxo , Proteínas Fúngicas/genética , Células HeLa/citologia , Humanos , Proteínas Mad2 , Proteínas Nucleares/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras , Fuso Acromático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA