Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 22, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475715

RESUMO

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins. Different approaches can help overcome this challenge. Conventional depletion methods face limitations in cost, throughput, accuracy, and off-target depletion. Nanoparticle-based enrichment shows promise in compressing dynamic range, but cost remains a constraint. Enrichment strategies for extracellular vesicles (EVs) can enhance plasma proteome coverage dramatically, but current methods are still too laborious for large series. Neat plasma remains popular for its cost-effectiveness, time efficiency, and low volume requirement. We used a test set of 33 plasma samples for all evaluations. Samples were digested using S-Trap and analyzed on Evosep One and nanoElute coupled to a timsTOF Pro using different elution gradients and ion mobility ranges. Data were mainly analyzed using library-free searches using DIA-NN. This study explores ways to improve proteome coverage in neat plasma both in MS data acquisition and MS data analysis. We demonstrate the value of sampling smaller hydrophilic peptides, increasing chromatographic separation, and using library-free searches. Additionally, we introduce the EV boost approach, that leverages on the extracellular vesicle fraction to enhance protein identification in neat plasma samples. Globally, our optimized analysis workflow allows the quantification of over 1000 proteins in neat plasma with a 24SPD throughput. We believe that these considerations can be of help independently of the LC-MS platform used.

2.
Proteomics ; 24(1-2): e2300100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37287406

RESUMO

Increased throughput in proteomic experiments can improve accessibility of proteomic platforms, reduce costs, and facilitate new approaches in systems biology and biomedical research. Here we propose combination of analytical flow rate chromatography with ion mobility separation of peptide ions, data-independent acquisition, and data analysis with the DIA-NN software suite, to achieve high-quality proteomic experiments from limited sample amounts, at a throughput of up to 400 samples per day. For instance, when benchmarking our workflow using a 500-µL/min flow rate and 3-min chromatographic gradients, we report the quantification of 5211 proteins from 2 µg of a mammalian cell-line standard at high quantitative accuracy and precision. We further used this platform to analyze blood plasma samples from a cohort of COVID-19 inpatients, using a 3-min chromatographic gradient and alternating column regeneration on a dual pump system. The method delivered a comprehensive view of the COVID-19 plasma proteome, allowing classification of the patients according to disease severity and revealing plasma biomarker candidates.


Assuntos
COVID-19 , Proteômica , Animais , Humanos , Proteômica/métodos , Peptídeos/análise , Proteoma/análise , Cromatografia Líquida/métodos , Mamíferos/metabolismo
3.
Redox Biol ; 67: 102908, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37793239

RESUMO

Protein cysteinyl thiols are susceptible to reduction-oxidation reactions that can influence protein function. Accurate quantification of cysteine oxidation is therefore crucial for decoding protein redox regulation. Here, we present CysQuant, a novel approach for simultaneous quantification of cysteine oxidation degrees and protein abundancies. CysQuant involves light/heavy iodoacetamide isotopologues for differential labeling of reduced and reversibly oxidized cysteines analyzed by data-dependent acquisition (DDA) or data-independent acquisition mass spectrometry (DIA-MS). Using plexDIA with in silico predicted spectral libraries, we quantified an average of 18% cysteine oxidation in Arabidopsis thaliana by DIA-MS, including a subset of highly oxidized cysteines forming disulfide bridges in AlphaFold2 predicted structures. Applying CysQuant to Arabidopsis seedlings exposed to excessive light, we successfully quantified the well-established increased reduction of Calvin-Benson cycle enzymes and discovered yet uncharacterized redox-sensitive disulfides in chloroplastic enzymes. Overall, CysQuant is a highly versatile tool for assessing the cysteine modification status that can be widely applied across various mass spectrometry platforms and organisms.


Assuntos
Cisteína , Proteínas , Cisteína/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Espectrometria de Massas , Oxirredução
4.
Cell Genom ; 3(8): 100347, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37601967

RESUMO

Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.

5.
Nat Commun ; 14(1): 4154, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438352

RESUMO

Liquid chromatography (LC) coupled with data-independent acquisition (DIA) mass spectrometry (MS) has been increasingly used in quantitative proteomics studies. Here, we present a fast and sensitive approach for direct peptide identification from DIA data, MSFragger-DIA, which leverages the unmatched speed of the fragment ion indexing-based search engine MSFragger. Different from most existing methods, MSFragger-DIA conducts a database search of the DIA tandem mass (MS/MS) spectra prior to spectral feature detection and peak tracing across the LC dimension. To streamline the analysis of DIA data and enable easy reproducibility, we integrate MSFragger-DIA into the FragPipe computational platform for seamless support of peptide identification and spectral library building from DIA, data-dependent acquisition (DDA), or both data types combined. We compare MSFragger-DIA with other DIA tools, such as DIA-Umpire based workflow in FragPipe, Spectronaut, DIA-NN library-free, and MaxDIA. We demonstrate the fast, sensitive, and accurate performance of MSFragger-DIA across a variety of sample types and data acquisition schemes, including single-cell proteomics, phosphoproteomics, and large-scale tumor proteome profiling studies.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Cromatografia Líquida , Bases de Dados Factuais
6.
Nat Commun ; 14(1): 4539, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500632

RESUMO

Peptide identification in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments relies on computational algorithms for matching acquired MS/MS spectra against sequences of candidate peptides using database search tools, such as MSFragger. Here, we present a new tool, MSBooster, for rescoring peptide-to-spectrum matches using additional features incorporating deep learning-based predictions of peptide properties, such as LC retention time, ion mobility, and MS/MS spectra. We demonstrate the utility of MSBooster, in tandem with MSFragger and Percolator, in several different workflows, including nonspecific searches (immunopeptidomics), direct identification of peptides from data independent acquisition data, single-cell proteomics, and data generated on an ion mobility separation-enabled timsTOF MS platform. MSBooster is fast, robust, and fully integrated into the widely used FragPipe computational platform.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Algoritmos , Bases de Dados de Proteínas
7.
Nat Metab ; 5(4): 660-676, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37024754

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is known to contain an active-site cysteine residue undergoing oxidation in response to hydrogen peroxide, leading to rapid inactivation of the enzyme. Here we show that human and mouse cells expressing a GAPDH mutant lacking this redox switch retain catalytic activity but are unable to stimulate the oxidative pentose phosphate pathway and enhance their reductive capacity. Specifically, we find that anchorage-independent growth of cells and spheroids is limited by an elevation of endogenous peroxide levels and is largely dependent on a functional GAPDH redox switch. Likewise, tumour growth in vivo is limited by peroxide stress and suppressed when the GAPDH redox switch is disabled in tumour cells. The induction of additional intratumoural oxidative stress by chemo- or radiotherapy synergized with the deactivation of the GAPDH redox switch. Mice lacking the GAPDH redox switch exhibit altered fatty acid metabolism in kidney and heart, apparently in compensation for the lack of the redox switch. Together, our findings demonstrate the physiological and pathophysiological relevance of oxidative GAPDH inactivation in mammals.


Assuntos
Cisteína , Gliceraldeído-3-Fosfato Desidrogenases , Humanos , Animais , Camundongos , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Oxirredução , Cisteína/metabolismo , Estresse Oxidativo , Peróxido de Hidrogênio/farmacologia , Mamíferos/metabolismo
8.
Nat Biotechnol ; 41(1): 50-59, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835881

RESUMO

Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.


Assuntos
Peptídeos , Proteômica , Humanos , Proteômica/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Cromatografia Líquida/métodos , Proteoma/metabolismo
9.
PLoS Biol ; 20(12): e3001912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36455053

RESUMO

The assimilation, incorporation, and metabolism of sulfur is a fundamental process across all domains of life, yet how cells deal with varying sulfur availability is not well understood. We studied an unresolved conundrum of sulfur fixation in yeast, in which organosulfur auxotrophy caused by deletion of the homocysteine synthase Met17p is overcome when cells are inoculated at high cell density. In combining the use of self-establishing metabolically cooperating (SeMeCo) communities with proteomic, genetic, and biochemical approaches, we discovered an uncharacterized gene product YLL058Wp, herein named Hydrogen Sulfide Utilizing-1 (HSU1). Hsu1p acts as a homocysteine synthase and allows the cells to substitute for Met17p by reassimilating hydrosulfide ions leaked from met17Δ cells into O-acetyl-homoserine and forming homocysteine. Our results show that cells can cooperate to achieve sulfur fixation, indicating that the collective properties of microbial communities facilitate their basic metabolic capacity to overcome sulfur limitation.


Assuntos
Cisteína Sintase , Metionina , Saccharomyces cerevisiae , Cisteína/metabolismo , Cisteína Sintase/genética , Cisteína Sintase/metabolismo , Metionina/metabolismo , Proteômica , Racemetionina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo
10.
iScience ; 25(10): 105040, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36062073

RESUMO

COVID-19 has highly variable clinical courses. The search for prognostic host factors for COVID-19 outcome is a priority. We performed logistic regression for ICU admission against a polygenic score (PGS) for Cystatin C (CyC) production in patients with COVID-19. We analyzed the predictive value of longitudinal plasma CyC levels in an independent cohort of patients hospitalized with COVID-19. In four cohorts spanning European and African ancestry populations, we identified a significant association between CyC-production PGS and odds of critical illness (n cases=2,319), with the strongest association captured in the UKB cohort (OR 2.13, 95% CI 1.58-2.87, p=7.12e-7). Plasma proteomics from an independent cohort of hospitalized COVID-19 patients (n cases = 131) demonstrated that CyC production was associated with COVID-specific mortality (p=0.0007). Our findings suggest that CyC may be useful for stratification of patients and it has functional role in the host response to COVID-19.

11.
Nat Commun ; 13(1): 4658, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945238

RESUMO

The mechanisms linking systemic infection to hyperinflammation and immune dysfunction in sepsis are poorly understood. Extracellular histones promote sepsis pathology, but their source and mechanism of action remain unclear. Here, we show that by controlling fungi and bacteria captured by splenic macrophages, neutrophil-derived myeloperoxidase attenuates sepsis by suppressing histone release. In systemic candidiasis, microbial capture via the phagocytic receptor SIGNR1 neutralizes myeloperoxidase by facilitating marginal zone infiltration and T cell death-dependent histone release. Histones and hyphae induce cytokines in adjacent CD169 macrophages including G-CSF that selectively depletes mature Ly6Ghigh neutrophils by shortening their lifespan in favour of immature Ly6Glow neutrophils with a defective oxidative burst. In sepsis patient plasma, these mediators shorten mature neutrophil lifespan and correlate with neutrophil mortality markers. Consequently, high G-CSF levels and neutrophil lifespan shortening activity are associated with sepsis patient mortality. Hence, by exploiting phagocytic receptors, pathogens degrade innate and adaptive immunity through the detrimental impact of downstream effectors on neutrophil lifespan.


Assuntos
Neutrófilos , Sepse , Fator Estimulador de Colônias de Granulócitos/metabolismo , Histonas/metabolismo , Humanos , Longevidade , Macrófagos/metabolismo , Peroxidase/metabolismo , Linfócitos T/metabolismo
12.
Nat Commun ; 13(1): 3944, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803928

RESUMO

The dia-PASEF technology uses ion mobility separation to reduce signal interferences and increase sensitivity in proteomic experiments. Here we present a two-dimensional peak-picking algorithm and generation of optimized spectral libraries, as well as take advantage of neural network-based processing of dia-PASEF data. Our computational platform boosts proteomic depth by up to 83% compared to previous work, and is specifically beneficial for fast proteomic experiments and those with low sample amounts. It quantifies over 5300 proteins in single injections recorded at 200 samples per day throughput using Evosep One chromatography system on a timsTOF Pro mass spectrometer and almost 9000 proteins in single injections recorded with a 93-min nanoflow gradient on timsTOF Pro 2, from 200 ng of HeLa peptides. A user-friendly implementation is provided through the incorporation of the algorithms in the DIA-NN software and by the FragPipe workflow for spectral library generation.


Assuntos
Proteoma , Proteômica , Análise de Dados , Humanos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos
13.
J Proteome Res ; 21(7): 1686-1693, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653712

RESUMO

Scanning SWATH coupled with normal-flow LC has been recently introduced for high-content, high-throughput proteomics analysis, which requires a relatively large amount of sample injection. Here we established the microflow LC coupled with Scanning SWATH for samples with relatively small quantities. First, we optimized several key parameters of the LC and MS settings, including C18 particle size for the analytical column, LC gradient and flow rate, as well as effective ion accumulation time and isolation window width for MS acquisition. We then compared the optimized Scanning SWATH method with the conventional variable window SWATH (referred to as SWATH) method. Results showed that the total ion chromatogram signals in Scanning SWATH were 10 times higher than that of SWATH, and Scanning SWATH identified 12.2-22.2% more peptides than SWATH. Finally, we employed 120 min Scanning SWATH to acquire the proteomes of 62 formalin-fixed, paraffin-embedded (FFPE) tissue samples from 31 patients with hepatocellular carcinoma (HCC). Altogether, 92 334 peptides and 8516 proteins were quantified. Besides the reported biomarkers, including ANXA2, MCM7, SUOX, and AKR1B10, we identified new potential HCC biomarkers such as CST5, TP53, CEBPB, and E2F4. Taken together, we present an optimal workflow integrating microflow LC and Scanning SWATH that effectively improves the protein identification and quantitation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Peptídeos , Proteômica/métodos
14.
Proteomics ; 22(15-16): e2200074, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35353442

RESUMO

The ubiquitin-proteasome system (UPS) was discovered about 40 years ago and is known to regulate a multitude of cellular processes including protein homeostasis. Ubiquitylated proteins are recognized by downstream effectors, resulting in alterations of protein abundance, activity, or localization. Not surprisingly, the ubiquitylation machinery is dysregulated in numerous diseases, including cancers and neurodegeneration. Mass spectrometry (MS)-based proteomics has emerged as a transformative technology for characterizing protein ubiquitylation in an unbiased fashion. Here, we provide an overview of the different MS-based approaches for studying protein ubiquitylation. We review various methods for enriching and quantifying ubiquitin modifications at the peptide or protein level, outline MS acquisition, and data processing approaches and discuss key challenges. Finally, we examine how MS-based ubiquitinomics can aid both basic biology and drug discovery research.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Descoberta de Drogas , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Ubiquitina/metabolismo , Ubiquitinação
15.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032429

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Ativação do Complemento , Proteoma , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Fatores Quimiotáticos/metabolismo , Citotoxicidade Imunológica , Células Endoteliais/virologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Microvasos/virologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análise de Célula Única , Adulto Jovem
16.
Nat Commun ; 12(1): 5399, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518535

RESUMO

Mass spectrometry (MS)-based ubiquitinomics provides system-level understanding of ubiquitin signaling. Here we present a scalable workflow for deep and precise in vivo ubiquitinome profiling, coupling an improved sample preparation protocol with data-independent acquisition (DIA)-MS and neural network-based data processing specifically optimized for ubiquitinomics. Compared to data-dependent acquisition (DDA), our method more than triples identification numbers to 70,000 ubiquitinated peptides in single MS runs, while significantly improving robustness and quantification precision. Upon inhibition of the oncology target USP7, we simultaneously record ubiquitination and consequent changes in abundance of more than 8,000 proteins at high temporal resolution. While ubiquitination of hundreds of proteins increases within minutes of USP7 inhibition, we find that only a small fraction of those are ever degraded, thereby dissecting the scope of USP7 action. Our method enables rapid mode-of-action profiling of candidate drugs targeting DUBs or ubiquitin ligases at high precision and throughput.


Assuntos
Redes Neurais de Computação , Proteoma/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Peptidase 7 Específica de Ubiquitina/metabolismo , Ubiquitinação , Linhagem Celular Tumoral , Células HCT116 , Humanos , Células Jurkat , Transdução de Sinais , Especificidade por Substrato , Fatores de Tempo , Ubiquitina/metabolismo
17.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226277

RESUMO

Here, we recorded serum proteome profiles of 33 severe COVID-19 patients admitted to respiratory and intensive care units because of respiratory failure. We received, for most patients, blood samples just after admission and at two more later time points. With the aim to predict treatment outcome, we focused on serum proteins different in abundance between the group of survivors and non-survivors. We observed that a small panel of about a dozen proteins were significantly different in abundance between these two groups. The four structurally and functionally related type-3 cystatins AHSG, FETUB, histidine-rich glycoprotein, and KNG1 were all more abundant in the survivors. The family of inter-α-trypsin inhibitors, ITIH1, ITIH2, ITIH3, and ITIH4, were all found to be differentially abundant in between survivors and non-survivors, whereby ITIH1 and ITIH2 were more abundant in the survivor group and ITIH3 and ITIH4 more abundant in the non-survivors. ITIH1/ITIH2 and ITIH3/ITIH4 also showed opposite trends in protein abundance during disease progression. We defined an optimal panel of nine proteins for mortality risk assessment. The prediction power of this mortality risk panel was evaluated against two recent COVID-19 serum proteomics studies on independent cohorts measured in other laboratories in different countries and observed to perform very well in predicting mortality also in these cohorts. This panel may not be unique for COVID-19 as some of the proteins in the panel have previously been annotated as mortality markers in aging and in other diseases caused by different pathogens, including bacteria.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , Proteoma/metabolismo , Índice de Gravidade de Doença , Idoso , COVID-19/virologia , Estudos de Coortes , Feminino , Hospitalização , Humanos , Imunoglobulinas/sangue , Masculino , SARS-CoV-2/fisiologia , Sobreviventes
18.
Nat Biotechnol ; 39(7): 846-854, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33767396

RESUMO

Accurate quantification of the proteome remains challenging for large sample series and longitudinal experiments. We report a data-independent acquisition method, Scanning SWATH, that accelerates mass spectrometric (MS) duty cycles, yielding quantitative proteomes in combination with short gradients and high-flow (800 µl min-1) chromatography. Exploiting a continuous movement of the precursor isolation window to assign precursor masses to tandem mass spectrometry (MS/MS) fragment traces, Scanning SWATH increases precursor identifications by ~70% compared to conventional data-independent acquisition (DIA) methods on 0.5-5-min chromatographic gradients. We demonstrate the application of ultra-fast proteomics in drug mode-of-action screening and plasma proteomics. Scanning SWATH proteomes capture the mode of action of fungistatic azoles and statins. Moreover, we confirm 43 and identify 11 new plasma proteome biomarkers of COVID-19 severity, advancing patient classification and biomarker discovery. Thus, our results demonstrate a substantial acceleration and increased depth in fast proteomic experiments that facilitate proteomic drug screens and clinical studies.


Assuntos
Proteômica/métodos , Espectrometria de Massas em Tandem , Arabidopsis/metabolismo , Biomarcadores/metabolismo , COVID-19/sangue , COVID-19/diagnóstico , Linhagem Celular , Humanos , Peptídeos/análise , Proteoma/análise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA