Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Am Soc Cytopathol ; 13(4): 263-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38677893

RESUMO

INTRODUCTION: The onset of the COVID-19 pandemic, with urgent implementation of safety protocols limiting the number of on-site personnel, essentially terminated the use of rapid on-site evaluation (ROSE) for computed tomography (CT)--guided lung biopsies at our institution. The diminished use of ROSE during the pandemic prompted us to reevaluate the potential value of ROSE for CT-guided lung biopsies. MATERIALS AND METHODS: We retrospectively identified all CT-guided lung biopsies from 2017 to 2022. Associations between the use of ROSE, adequate diagnostic and ancillary testing (programmed death-ligand 1 immunohistochemistry and next-generation sequencing) outcomes, and other factors such as the number of passes performed and lesion size, were evaluated. RESULTS: Nine hundred twelve CT-guided lung biopsies were performed from 2017 to 2022; 171 (19%) utilized ROSE. The use of ROSE had been steadily decreasing prior to the pandemic but was essentially eliminated with the onset of the pandemic. By univariable analysis, the employment of ROSE was more likely to be associated with an adequate final diagnosis (odds ratio = 2.14, 95% confidence interval: [1.24-3.70], P = 0.006) and successful molecular testing (odds ratio = 2.16, 95% confidence interval: [1.11-4.21], P = 0.024). However, those associations were not present in multivariable analyses that incorporated the number of passes performed or lesion size. There were no differences in diagnostic adequacy or ancillary testing yields when comparing the periods 2017-2019 and 2020-2022, despite declining use of ROSE. CONCLUSIONS: If ROSE is not requested for CT-guided lung biopsies, proceduralists should err on the side of performing more, rather than fewer, passes, particularly for smaller lesions.


Assuntos
Antígeno B7-H1 , COVID-19 , Biópsia Guiada por Imagem , Imuno-Histoquímica , Pulmão , SARS-CoV-2 , Tomografia Computadorizada por Raios X , Humanos , COVID-19/patologia , COVID-19/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Estudos Retrospectivos , Masculino , Feminino , Imuno-Histoquímica/métodos , Pessoa de Meia-Idade , Antígeno B7-H1/metabolismo , Pulmão/patologia , Pulmão/diagnóstico por imagem , Idoso , Biópsia Guiada por Imagem/métodos , SARS-CoV-2/isolamento & purificação , Adulto , Pandemias , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia
2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762046

RESUMO

Radiation therapy (RT) has recently demonstrated promise at stimulating an enhanced immune response. The recent success of immunotherapies, such as checkpoint inhibitors, CART cells, and other immune modulators, affords new opportunities for combination with radiation. The aim of this study is to evaluate whether and to what extent blockade of VISTA, an immune checkpoint, can potentiate the tumor control ability of radiation therapy. Our study is novel in that it is the first comparison of two VISTA-blocking methods (antibody inhibition and genetic knockout) in combination with RT. VISTA was blocked either through genetic knockout (KO) or an inhibitory antibody and combined with RT in two syngeneic murine flank tumor models (B16 and MC38). Selected mRNA, immune cell infiltration, and tumor growth delay were used to assess the biological effects. When combined with a single 15Gy radiation dose, VISTA blockade via genetic knockout in the B16 model and via anti-VISTA antibodies in the MC38 model significantly improved survival compared to RT alone by an average of 5.5 days and 6.3 days, respectively (p < 0.05). The gene expression data suggest that the mechanism behind the enhanced tumor control is primarily a result of increased apoptosis and immune-mediated cytotoxicity. VISTA blockade significantly enhances the anti-tumor effect of a single dose of 15Gy radiation through increased expression and stimulation of cell-mediated apoptosis pathways. These results suggest that VISTA is a biologically relevant immune promoter that has the potential to enhance the efficacy of a large single radiation dose in a synergic manner.


Assuntos
Adenocarcinoma , Melanoma , Animais , Camundongos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/radioterapia , Anticorpos , Modelos Animais de Doenças , Melanoma/tratamento farmacológico , Melanoma/radioterapia , Linfócitos T , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Clin Cancer Res ; 29(18): 3717-3728, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37439680

RESUMO

PURPOSE: Clinical evidence indicates that treatment with estrogens elicits anticancer effects in ∼30% of patients with advanced endocrine-resistant estrogen receptor α (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains underused. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. EXPERIMENTAL DESIGN: We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17ß-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDX), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. RESULTS: Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacologic suppression of the DNA damage response via PARP inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2-mutant and BRCA1/2-wild-type cell line and PDX models. CONCLUSIONS: E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Proteína BRCA1/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Proteína BRCA2/genética , Estrogênios/metabolismo , Dano ao DNA , Linhagem Celular Tumoral
4.
Clin Cancer Res ; 29(15): 2767-2773, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260292

RESUMO

PURPOSE: Strategies to implement estrogen therapy for advanced estrogen receptor-positive (ER+) breast cancer are underdeveloped. Preclinical data suggest that cycling treatment with 17ß-estradiol followed by estrogen deprivation can control tumor growth long-term. PATIENTS AND METHODS: Postmenopausal women with advanced ER+/HER2- breast cancer with recurrence or progression on ≥ 1 antiestrogen or aromatase inhibitor (AI)-based therapy were eligible. Patients received 17ß-estradiol (2 mg orally, three times a day) for 8 weeks followed by AI (physician's choice) for 16 weeks, alternating treatments on an 8-week/16-week schedule until disease progression. Patients then optionally received continuous single-agent treatment until a second instance of disease progression. Endpoints included 24-week clinical benefit and objective response per RECIST, and tumor genetic alterations. RESULTS: Of 19 evaluable patients, clinical benefit rate was 42.1% [95% confidence interval (CI), 23.1%-63.9%] and objective response rate (ORR) was 15.8% (95% CI, 5.7%-37.9%). One patient experienced a grade 3 adverse event related to 17ß-estradiol. Among patients who received continuous single-agent treatment until a second instance of disease progression, clinical benefit was observed in 5 of 12 (41.7%) cases. Tumor ER (ESR1) mutations were found by whole-exome profiling in 4 of 7 (57.1%) versus 2 of 9 (22.2%) patients who did versus did not experience clinical benefit from alternating 17ß-estradiol/AI therapy. The only two patients to experience objective responses to initial 17ß-estradiol had tumor ESR1 mutations. CONCLUSIONS: Alternating 17ß-estradiol/AI therapy may be a promising treatment for endocrine-refractory ER+ breast cancer, including following progression on CDK4/6 inhibitors or everolimus. Further study is warranted to determine whether the antitumor activity of 17ß-estradiol differs according to ESR1 mutation status.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Inibidores da Aromatase/efeitos adversos , Pós-Menopausa , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Estradiol , Estrogênios , Progressão da Doença
5.
bioRxiv ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36993590

RESUMO

Purpose: Clinical evidence indicates that treatment with estrogens elicits anti-cancer effects in ∼30% of patients with advanced endocrine-resistant estrogen receptor alpha (ER)-positive breast cancer. Despite the proven efficacy of estrogen therapy, its mechanism of action is unclear and this treatment remains under-utilized. Mechanistic understanding may offer strategies to enhance therapeutic efficacy. Experimental Design: We performed genome-wide CRISPR/Cas9 screening and transcriptomic profiling in long-term estrogen-deprived (LTED) ER+ breast cancer cells to identify pathways required for therapeutic response to the estrogen 17ß-estradiol (E2). We validated findings in cell lines, patient-derived xenografts (PDXs), and patient samples, and developed a novel combination treatment through testing in cell lines and PDX models. Results: Cells treated with E2 exhibited replication-dependent markers of DNA damage and the DNA damage response prior to apoptosis. Such DNA damage was partially driven by the formation of DNA:RNA hybrids (R-loops). Pharmacological suppression of the DNA damage response via poly(ADP-ribose) polymerase (PARP) inhibition with olaparib enhanced E2-induced DNA damage. PARP inhibition synergized with E2 to suppress growth and prevent tumor recurrence in BRCA1/2 -mutant and BRCA1 /2-wild-type cell line and PDX models. Conclusions: E2-induced ER activity drives DNA damage and growth inhibition in endocrine-resistant breast cancer cells. Inhibition of the DNA damage response using drugs such as PARP inhibitors can enhance therapeutic response to E2. These findings warrant clinical exploration of the combination of E2 with DNA damage response inhibitors in advanced ER+ breast cancer, and suggest that PARP inhibitors may synergize with therapeutics that exacerbate transcriptional stress.

6.
Br J Clin Pharmacol ; 89(3): 1027-1035, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36164710

RESUMO

AIM: Metformin is used for the management of type 2 diabetes mellitus (T2DM) and is being tested clinically as an anticancer agent. Metformin concentrations safely achievable in human solid tissues including tumours are unknown. This study was designed to determine metformin concentration in tissue compartments as a function of dose to inform rational dosing in preclinical models and interpretation of clinical results." METHODS: Subjects with solid tumours to be treated by resection and either (A) willingness to take metformin for 7-10 days before surgery or (B) taking metformin for T2DM were eligible. Whole blood, plasma, tumour, tumour-adjacent uninvolved tissue and subcutaneous adipose tissue were obtained for liquid chromatography with tandem mass spectrometry to measure metformin concentrations. RESULTS: All subjects had primary lung tumours. Metformin dose was significantly correlated with drug concentrations in all tissues analysed. Intersubject metformin concentrations varied by over two orders of magnitude. Metformin concentrations were significantly higher in tumour tissues and lower in adipose tissues compared to other tissues. Concentrations in blood and plasma were significantly correlated with concentrations in solid tissues. CONCLUSION: Metformin accumulates in cellular compartments. Concentrations observed in plasma, blood, lung and tumour tissues in subjects treated with US Food and Drug Administration-approved doses for T2DM are lower than those typically used in tissue culture studies. However, such tissue concentrations are in line with those found within cultured cells treated with supra-pharmacological doses of metformin. Given the large intersubject variability in metformin concentrations, it is imperative to determine whether there is an association between tissue metformin concentration and anticancer activity in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Tecido Adiposo , Neoplasias Pulmonares/tratamento farmacológico , Plasma , Hipoglicemiantes
7.
Front Oncol ; 11: 743256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660306

RESUMO

OBJECTIVE: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the 'OxyChip', as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. METHODS: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. RESULTS: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4-128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6-73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5-144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. CONCLUSIONS: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes.

8.
J Magn Reson ; 328: 106992, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33965648

RESUMO

Electron paramagnetic resonance (EPR) oximetry, using oxygen-sensing implant such as OxyChip, is capable of measuring oxygen concentration in vivo - a critical tissue information required for successful medical treatment such as cancer, wound healing and diabetes. Typically, EPR oximetry produces one value of the oxygen concentration, expressed as pO2 at the site of implant. However, it is well recognized that in vivo one deals with a distribution of oxygen concentration and therefore reporting just one number is not representative_a long-standing critique of EPR oximetry. Indeed, when it comes to the assessment of radiation efficacy one should be guided not by the mean or median but the proportion of oxygenated cancer cells which can be estimated only when the whole oxygen distribution in the tumor is known. Although there is a handful of papers attempting estimation of the oxygen distribution they suffer from the problem of negative frequencies and no theoretical justification and no biomedical interpretation. The goal of this work is to suggest a novel method using the empirical Bayesian approach realized via nonlinear mixed modeling with a priori distribution of oxygen following a two-parameter lognormal distribution with parameters estimated from the multi-implant single component EPR scan. Unlike previous work, the result of our estimation is the distribution with positive values for the frequency and the associated pO2 value. Our algorithm based on nonlinear regression is illustrated with EPR measurements on OxyChips equilibrated with gas mixtures containing four values of pO2 and computation of the proportion of volume with pO2 greater than any given threshold. This approach may become crucial for application of the EPR oximetry in clinical setting when the sucsess of the treatment depends of the proportion of tissue oxygenated.


Assuntos
Neoplasias , Oximetria , Teorema de Bayes , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Neoplasias/diagnóstico por imagem , Oxigênio
9.
Oncogene ; 40(19): 3408-3421, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33875787

RESUMO

Estrogen receptor alpha (ER)-positive breast cancer is commonly treated with endocrine therapies, including antiestrogens that bind and inhibit ER activity, and aromatase inhibitors that suppress estrogen biosynthesis to inhibit estrogen-dependent ER activity. Paradoxically, treatment with estrogens such as 17b-estradiol can also be effective against ER+ breast cancer. Despite the known efficacy of estrogen therapy, the lack of a predictive biomarker of response and understanding of the mechanism of action have contributed to its limited clinical use. Herein, we demonstrate that ER overexpression confers resistance to estrogen deprivation through ER activation in human ER+ breast cancer cells and xenografts grown in mice. However, ER overexpression and the associated high levels of ER transcriptional activation converted 17b-estradiol from a growth-promoter to a growth-suppressor, offering a targetable therapeutic vulnerability and a potential means of identifying patients likely to benefit from estrogen therapy. Since ER+ breast cancer cells and tumors ultimately developed resistance to continuous estrogen deprivation or continuous 17b-estradiol treatment, we tested schedules of alternating treatments. Oscillation of ER activity through cycling of 17b-estradiol and estrogen deprivation provided long-term control of patient-derived xenografts, offering a novel endocrine-only strategy to manage ER+ breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/farmacologia , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Sci Rep ; 11(1): 4422, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627688

RESUMO

During a first-in-humans clinical trial investigating electron paramagnetic resonance tumor oximetry, a patient injected with the particulate oxygen sensor Printex ink was found to have unexpected fluorodeoxyglucose (FDG) uptake in a dermal nodule via positron emission tomography (PET). This nodule co-localized with the Printex ink injection; biopsy of the area, due to concern for malignancy, revealed findings consistent with ink and an associated inflammatory reaction. Investigations were subsequently performed to assess the impact of oxygen sensors on FDG-PET/CT imaging. A retrospective analysis of three clinical tumor oximetry trials involving two oxygen sensors (charcoal particulates and LiNc-BuO microcrystals) in 22 patients was performed to evaluate FDG imaging characteristics. The impact of clinically used oxygen sensors (carbon black, charcoal particulates, LiNc-BuO microcrystals) on FDG-PET/CT imaging after implantation in rat muscle (n = 12) was investigated. The retrospective review revealed no other patients with FDG avidity associated with particulate sensors. The preclinical investigation found no injected oxygen sensor whose mean standard uptake values differed significantly from sham injections. The risk of a false-positive FDG-PET/CT scan due to oxygen sensors appears low. However, in the right clinical context the potential exists that an associated inflammatory reaction may confound interpretation.

11.
Int J Hyperthermia ; 37(1): 929-937, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32757666

RESUMO

OBJECTIVE: The goal of this study is to better understand the immunogenetic expression and related cytotoxic responses of moderate but clinically relevant doses of hypofractionated radiation (1x15 Gy and 3x8 Gy) and magnetic nanoparticle hyperthermia (mNPH, CEM43 30). METHODS: Genetic, protein, immunopathology and tumor growth delay assessments were used to determine the immune and cytotoxic responses following radiation and mNPH alone and in combination. Although the thermal dose used, 43 C°/30 min (CEM43 30), typically results in modest independent cytotoxicity, it has shown the ability to stimulate an immune response and enhance other cancer treatments. The radiation doses studied (15 Gy and 3x8 Gy) are commonly used in preclinical research and are effective in selected stereotactic and palliative treatment settings, however they are not commonly used as first-line primary tumor treatment regimens. RESULTS: Our RNA-based genetic results suggest that while many of the cytotoxic and immune gene and protein pathways for radiation and hyperthermia are similar, radiation, at the doses used, results in a more consistent and expansive anti-cancer immune/cytotoxic expression profile. These results were supported by immunohistochemistry based cytotoxic T-cell tumor infiltration and tumor growth delay studies. When used together radiation and hyperthermia led to greater immune and cytotoxic activity than either modality alone. CONCLUSION: This study clearly shows that modest, but commonly used hypofractionated radiation and hyperthermia doses share many important immune and cytotoxic pathways and that combining the treatments, as compared to either treatment alone, results in genetic and biological anti-cancer benefits.


Assuntos
Antineoplásicos , Hipertermia Induzida , Terapia Combinada , Humanos , Hipertermia , Imunogenética
12.
Clin Cancer Res ; 26(14): 3707-3719, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32321715

RESUMO

PURPOSE: Despite adjuvant endocrine therapy for patients with estrogen receptor alpha (ER)-positive breast cancer, dormant residual disease can persist for years and eventually cause tumor recurrence. We sought to deduce mechanisms underlying the persistence of dormant cancer cells to identify therapeutic strategies. EXPERIMENTAL DESIGN: Mimicking the aromatase inhibitor-induced depletion of estrogen levels used to treat patients, we developed preclinical models of dormancy in ER+ breast cancer induced by estrogen withdrawal in mice. We analyzed tumor xenografts and cultured cancer cells for molecular and cellular responses to estrogen withdrawal and drug treatments. Publicly available clinical breast tumor gene expression datasets were analyzed for responses to neoadjuvant endocrine therapy. RESULTS: Dormant breast cancer cells exhibited upregulated 5' adenosine monophosphate-activated protein kinase (AMPK) levels and activity, and upregulated fatty acid oxidation. While the antidiabetes AMPK-activating drug metformin slowed the estrogen-driven growth of cells and tumors, metformin promoted the persistence of estrogen-deprived cells and tumors through increased mitochondrial respiration driven by fatty acid oxidation. Pharmacologic or genetic inhibition of AMPK or fatty acid oxidation promoted clearance of dormant residual disease, while dietary fat increased tumor cell survival. CONCLUSIONS: AMPK has context-dependent effects in cancer, cautioning against the widespread use of an AMPK activator across disease settings. The development of therapeutics targeting fat metabolism is warranted in ER+ breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/terapia , Sobrevivência Celular/efeitos dos fármacos , Metformina/farmacologia , Animais , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante/métodos , Estrogênios/biossíntese , Feminino , Humanos , Metformina/uso terapêutico , Camundongos , Terapia Neoadjuvante/métodos , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 26(1): 159-170, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31558472

RESUMO

PURPOSE: We hypothesized that integrated analysis of cancer types from different lineages would reveal novel molecularly defined subgroups with unique therapeutic vulnerabilities. On the basis of the molecular similarities between subgroups of breast and ovarian cancers, we analyzed these cancers as a single cohort to test our hypothesis. EXPERIMENTAL DESIGN: Identification of transcriptional subgroups of cancers and drug sensitivity analyses were performed using mined data. Cell line sensitivity to Hsp90 inhibitors (Hsp90i) was tested in vitro. The ability of a transcriptional signature to predict Hsp90i sensitivity was validated using cell lines, and cell line- and patient-derived xenograft (PDX) models. Mechanisms of Hsp90i sensitivity were uncovered using immunoblot and RNAi. RESULTS: Transcriptomic analyses of breast and ovarian cancer cell lines uncovered two mixed subgroups comprised primarily of triple-negative breast and multiple ovarian cancer subtypes. Drug sensitivity analyses revealed that cells of one mixed subgroup are significantly more sensitive to Hsp90i compared with cells from all other cancer lineages evaluated. A gene expression classifier was generated that predicted Hsp90i sensitivity in vitro, and in cell line- and PDXs. Cells from the Hsp90i-sensitive subgroup underwent apoptosis mediated by Hsp90i-induced upregulation of the proapoptotic proteins Bim and PUMA. CONCLUSIONS: Our findings identify Hsp90i as a potential therapeutic strategy for a transcriptionally defined subgroup of ovarian and breast cancers. This study demonstrates that gene expression profiles may be useful to identify therapeutic vulnerabilities in tumor types with limited targetable genetic alterations, and to identify molecularly definable cancer subgroups that transcend lineage.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
PLoS One ; 14(11): e0224137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31765385

RESUMO

Although synergy is a pillar of modern pharmacology, toxicology, and medicine, there is no consensus on its definition despite its nearly one hundred-year history. Moreover, methods for statistical determination of synergy that account for variation of response to treatment are underdeveloped and if exist are reduced to the traditional t-test, but do not comply with the normal distribution assumption. We offer statistical models for estimation of synergy using an established definition of Bliss drugs' independence. Although Bliss definition is well-known, it remains a theoretical concept and has never been applied for statistical determination of synergy with various forms of treatment outcome. We rigorously and consistently extend the Bliss definition to detect statistically significant synergy under various designs: (1) in vitro, when the outcome of a cell culture experiment with replicates is the proportion of surviving cells for a single dose or multiple doses, (2) dose-response methodology, (3) in vivo studies in organisms, when the outcome is a longitudinal measurement such as tumor volume, and (4) clinical studies, when the outcome of treatment is measured by survival. For each design, we developed a specific statistical model and demonstrated how to test for independence, synergy, and antagonism, and compute the associated p-value.


Assuntos
Antineoplásicos/farmacologia , Modelos Biológicos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Análise de Intenção de Tratamento , Estimativa de Kaplan-Meier , Camundongos , Neoplasias/mortalidade , Resultado do Tratamento
15.
Mol Oncol ; 13(8): 1778-1794, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31180176

RESUMO

Estrogens have been shown to elicit anticancer effects against estrogen receptor α (ER)-positive breast cancer. We sought to determine the mechanism underlying the therapeutic response. Response to 17ß-estradiol was assessed in ER+ breast cancer models with resistance to estrogen deprivation: WHIM16 patient-derived xenografts, C7-2-HI and C4-HI murine mammary adenocarcinomas, and long-term estrogen-deprived MCF-7 cells. As another means to reactivate ER, the anti-estrogen fulvestrant was withdrawn from fulvestrant-resistant MCF-7 cells. Transcriptional, growth, apoptosis, and molecular alterations in response to ER reactivation were measured. 17ß-estradiol treatment and fulvestrant withdrawal induced transcriptional activation of ER, and cells adapted to estrogen deprivation or fulvestrant were hypersensitive to 17ß-estradiol. ER transcriptional response was followed by an unfolded protein response and apoptosis. Such apoptosis was dependent upon the unfolded protein response, p53, and JNK signaling. Anticancer effects were most pronounced in models exhibiting genomic amplification of the gene encoding ER (ESR1), suggesting that engagement of ER at high levels is cytotoxic. These data indicate that long-term adaptation to estrogen deprivation or ER inhibition alters sensitivity to ER reactivation. In such adapted cells, 17ß-estradiol treatment and anti-estrogen withdrawal hyperactivate ER, which drives an unfolded protein response and subsequent growth inhibition and apoptosis. 17ß-estradiol treatment should be considered as a therapeutic option for anti-estrogen-resistant disease, particularly in patients with tumors harboring ESR1 amplification or ER overexpression. Furthermore, therapeutic strategies that enhance an unfolded protein response may increase the therapeutic effects of ER reactivation.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Estrogênios/uso terapêutico , Receptores de Estrogênio/metabolismo , Resposta a Proteínas não Dobradas , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Moduladores de Receptor Estrogênico/farmacologia , Moduladores de Receptor Estrogênico/uso terapêutico , Estrogênios/farmacologia , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células MCF-7 , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Transcriptoma/genética , Proteína Supressora de Tumor p53/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos
16.
Clin Pharmacol ; 11: 15-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774453

RESUMO

BACKGROUND: Small-cell lung cancer (SCLC) has a poor prognosis since there is currently no effective therapy for commonly recurring disease. In our previous study, both primary and recurrent human tumors have been shown to express functional N-methyl-D-aspartate (NMDA) receptors, and blockade of these receptors with GluN1 and GluN2B antagonists decreased tumor cell viability in vitro, and growth of tumor xenografts in nu/nu mice. MATERIALS AND METHODS: In this study, we examine the influence of the GluN2B antagonist ifenprodil and the channel-blocker antagonist memantine, on cell viability and growth of tumor xenografts of recurrent SCLC (rSCLC) in mice. RESULTS: Both antagonists significantly reduced cell viability and levels of components of the ERK1/2 pathway, increased apoptosis, and at very safe levels significantly reduced the growth of tumors in mice. Each antagonist and topotecan had additive effects to reduce cell viability with significant synergy demonstrated for the case of memantine. More significantly, combination treatments of xenografts in mice with ifenprodil and the chemotherapeutic agent topotecan produced clear additive effects that completely stopped tumor growth. Moreover, the ifenprodil and topotecan combination showed excellent supra-addition or synergy of inhibition for tumors ≤300 mm in size (P=4.7E-4). Combination treatment of memantine with topotecan also showed clear addition but, unlike ifenprodil, no synergy for the doses chosen. CONCLUSION: Since topotecan is a drug of choice for treatment of rSCLC, our findings suggest that combining this agent with NMDA receptor blockade using the GluN2B antagonist, ifenprodil, will significantly improve patient outcomes.

17.
J Exp Med ; 215(3): 895-910, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29436393

RESUMO

Drug resistance to approved systemic therapies in estrogen receptor-positive (ER+) breast cancer remains common. We hypothesized that factors present in the human tumor microenvironment (TME) drive drug resistance. Screening of a library of recombinant secreted microenvironmental proteins revealed fibroblast growth factor 2 (FGF2) as a potent mediator of resistance to anti-estrogens, mTORC1 inhibition, and phosphatidylinositol 3-kinase inhibition in ER+ breast cancer. Phosphoproteomic analyses identified ERK1/2 as a major output of FGF2 signaling via FGF receptors (FGFRs), with consequent up-regulation of Cyclin D1 and down-regulation of Bim as mediators of drug resistance. FGF2-driven drug resistance in anti-estrogen-sensitive and -resistant models, including patient-derived xenografts, was reverted by neutralizing FGF2 or FGFRs. A transcriptomic signature of FGF2 signaling in primary tumors predicted shorter recurrence-free survival independently of age, grade, stage, and FGFR amplification status. These findings delineate FGF2 signaling as a ligand-based drug resistance mechanism and highlights an underdeveloped aspect of precision oncology: characterizing and treating patients according to their TME constitution.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Receptores de Estrogênio/metabolismo , Microambiente Tumoral , Animais , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Neoplasias da Mama/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Ligantes , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Modelos Biológicos , Recidiva Local de Neoplasia/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Transcriptoma/genética , Resultado do Tratamento , Microambiente Tumoral/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
FASEB J ; 32(3): 1222-1235, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29127189

RESUMO

Hyperactivation of the PI3K pathway has been implicated in resistance to antiestrogen therapies in estrogen receptor α (ER)-positive breast cancer, prompting the development of therapeutic strategies to inhibit this pathway. Autophagy has tumor-promoting and -suppressing roles and has been broadly implicated in resistance to anticancer therapies, including antiestrogens. Chloroquine (CQ) is an antimalarial and amebicidal drug that inhibits autophagy in mammalian cells and human tumors. Herein, we observed that CQ inhibited proliferation and autophagy in ER+ breast cancer cells. PI3K inhibition with GDC-0941 (pictilisib) induced autophagy. Inhibition of autophagy using CQ or RNA interference potentiated PI3K inhibitor-induced apoptosis. Combined inhibition of PI3K and autophagy effectively induced mitochondrial membrane depolarization, which required the BH3-only proapoptotic proteins Bim and PUMA. Treatment with GDC-0941, CQ, or the combination, significantly suppressed the growth of ER+ breast cancer xenografts in mice. In an antiestrogen-resistant xenograft model, GDC-0941 synergized with CQ to provide partial, but durable, tumor regression. These findings warrant clinical evaluation of therapeutic strategies to target ER, PI3K, and autophagy for the treatment of ER+ breast cancer.-Yang, W., Hosford, S. R., Traphagen, N. A., Shee, K., Demidenko, E., Liu, S., Miller, T. W. Autophagy promotes escape from phosphatidylinositol 3-kinase inhibition in estrogen receptor-positive breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia , Neoplasias da Mama/patologia , Cloroquina/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Receptores de Estrogênio/metabolismo , Animais , Antimaláricos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Nutr Res ; 44: 38-50, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28821316

RESUMO

Inhibition of the aryl hydrocarbon receptor (AHR) prevents Western diet-induced obesity and fatty liver in C57Bl/6J (B6) male mice. The AHR is a ligand-activated nuclear receptor that regulates genes involved in xenobiotic metabolism and T-cell differentiation. Here, we tested the hypothesis that AHR antagonism would also prevent obesity and fatty liver in female mice and that B6 mice (higher-affinity AHR) and congenic B6.D2 mice (lower-affinity AHR) would differentially respond to AHR inhibition. Female and male adult B6 and B6.D2 mice were fed control and Western diets with and without α-naphthoflavone (NF), an AHR inhibitor. A nonlinear mixed-model analysis was developed to project asymptote body mass. We found that obesity, adiposity, and liver steatosis were reduced to near control levels in all female and male B6 and B6.D2 experimental groups fed Western diet with NF. However, differences were noted in that female B6.D2 vs B6 mice on Western diet became more obese; and in general, female mice compared with male mice had a greater fat mass to body mass ratio, were less responsive to NF, and had reduced liver steatosis and hepatomegaly. We report that male mice fed Western diet containing NF or CH-223191, another AHR inhibitor, caused reduced mRNA levels of several liver genes involved in metabolism, including Cyp1b1 and Scd1, offering evidence for a possible mechanism by which the AHR regulates obesity. In conclusion, although there are some sex- and Ahr allelic-dependent differences, AHR inhibition prevents obesity and liver steatosis in both males and females regardless of the ligand-binding capacity of the AHR. We also present evidence consistent with the notion that an AHR-CYP1B1-SCD1 axis is involved in obesity, providing potentially convenient and effective targets for treatment.


Assuntos
Benzoflavonas/farmacologia , Fígado Gorduroso/prevenção & controle , Obesidade/prevenção & controle , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Adiposidade/efeitos dos fármacos , Animais , Compostos Azo/farmacologia , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Dieta Ocidental , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo
20.
Int J Breast Cancer ; 2017: 4537532, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28698809

RESUMO

BACKGROUND: Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-Rex1) has been implicated in cancer growth, metastasis, and response to phosphatidylinositol 3-kinase (PI3K) inhibitor therapy. The aim of this study was to determine whether P-Rex1 expression differs between primary and metastatic human breast tumors and between breast cancer subtypes. DESIGN: P-Rex1 expression was measured in 133 specimens by immunohistochemistry: 40 and 42 primary breast tumors from patients who did versus did not develop metastasis, respectively, and 51 breast-derived tumors from metastatic sites (36 of which had matching primary tumors available for analysis). RESULTS: Primary breast tumors showed significant differences in P-Rex1 expression based on receptor subtype. ER+ and HER2+ primary tumors showed higher P-Rex1 expression than primary triple-negative tumors. HER2+ metastases from all sites showed significantly higher P-Rex1 expression compared to other metastatic receptor subtypes. Solid organ (i.e., brain, lung, and liver) metastases showed higher P-Rex1 expression compared to bone metastases. CONCLUSIONS: P-Rex1 expression is increased in ER+ and HER2+ breast cancers compared to triple-negative tumors. P-Rex1 may be differentially expressed in metastatic tumors based on site and receptor status. The role of P-Rex1 in the development of breast cancer metastases and as a predictive biomarker of therapeutic response warrants further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA