Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-28861399

RESUMO

Earlier we demonstrated that the adenylyl cyclase (AC) encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active growth to dormancy in an extended stationary phase accompanied by medium acidification. We surmised that the homologous Rv2212 gene of M. tuberculosis (Mtb), the main cAMP producer, plays similar physiological roles by supporting, under these conditions, the active state and reactivation of dormant bacteria. To test this hypothesis, we established Mtb strain overexpressing Rv2212 and compared its in vitro and in vivo growth characteristics with a control strain. In vitro, the AC-overexpressing pMindRv2212 strain demonstrated faster growth in a liquid medium, prolonged capacity to form CFUs and a significant delay or even prevention of transition toward dormancy. AC-overexpressing cells exhibited easier recovery from dormancy. In vivo, AC-overexpressing bacteria demonstrated significantly higher growth rates (virulence) in the lungs and spleens of infected mice compared to the control strain, and, unlike the latter, killed mice in the TB-resistant strain before month 8 of infection. Even in the absence of selecting hygromycin B, all pMindRv2212 CFUs retained the Rv2212 insert during in vivo growth, strongly suggesting that AC overexpression is beneficial for bacteria. Taken together, our results indicate that cAMP supports the maintenance of Mtb cells vitality under unfavorable conditions in vitro and their virulence in vivo.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Contagem de Colônia Microbiana , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Higromicina B/farmacologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Baço/microbiologia , Baço/fisiologia , Tuberculose/patologia , Virulência
2.
Mol Microbiol ; 59(1): 84-98, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16359320

RESUMO

The culturability of several actinobacteria is controlled by resuscitation-promoting factors (Rpfs). These are proteins containing a c. 70-residue domain that adopts a lysozyme-like fold. The invariant catalytic glutamate residue found in lysozyme and various bacterial lytic transglycosylases is also conserved in the Rpf proteins. Rpf from Micrococcus luteus, the founder member of this protein family, is indeed a muralytic enzyme, as revealed by its activity in zymograms containing M. luteus cell walls and its ability to (i) cause lysis of Escherichia coli when expressed and secreted into the periplasm; (ii) release fluorescent material from fluorescamine-labelled cell walls of M. luteus; and (iii) hydrolyse the artificial lysozyme substrate, 4-methylumbelliferyl-beta-D-N,N',N''-triacetylchitotrioside. Rpf activity was reduced but not completely abolished when the invariant glutamate residue was altered. Moreover, none of the other acidic residues in the Rpf domain was absolutely required for muralytic activity. Replacement of one or both of the cysteine residues that probably form a disulphide bridge within Rpf impaired but did not completely abolish muralytic activity. The muralytic activities of the Rpf mutants were correlated with their abilities to stimulate bacterial culturability and resuscitation, consistent with the view that the biological activity of Rpf results directly or indirectly from its ability to cleave bonds in bacterial peptidoglycan.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Citocinas/metabolismo , Micrococcus luteus/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacteriólise , Citocinas/química , Citocinas/genética , Escherichia coli/metabolismo , Fluorescamina/metabolismo , Ácido Glutâmico/metabolismo , Indicadores e Reagentes/metabolismo , Camundongos , Modelos Moleculares , Muramidase/metabolismo , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA