Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36145242

RESUMO

The loss of functional pancreatic ß-cell mass is an important hallmark of both type 1 and type 2 diabetes. The RNA-binding protein NOVA1 is expressed in human and rodent pancreatic ß-cells. Previous in vitro studies indicated that NOVA1 is necessary for glucose-stimulated insulin secretion and its deficiency-enhanced cytokine-induced apoptosis. Moreover, Bim, a proapoptotic protein, is differentially spliced and potentiates apoptosis in NOVA1-deficient ß-cells in culture. We generated two novel mouse models by Cre-Lox technology lacking Nova1 (ßNova1-/-) or Bim (ßBim-/-) in ß-cells. To test the impact of Nova1 or Bim deletion on ß-cell function, mice were subjected to multiple low-dose streptozotocin (MLD-STZ)-induced diabetes or high-fat diet-induced insulin resistance. ß-cell-specific Nova1 or Bim deficiency failed to affect diabetes development in response to MLD-STZ-induced ß-cell dysfunction and death evidenced by unaltered blood glucose levels and pancreatic insulin content. In addition, body composition, glucose and insulin tolerance test, and pancreatic insulin content were indistinguishable between control and ßNova1-/- or ßBim-/- mice on a high fat diet. Thus, Nova1 or Bim deletion in ß-cells does not impact on glucose homeostasis or diabetes development in mice. Together, these data argue against an in vivo role for the Nova1-Bim axis in ß-cells.


Assuntos
Proteína 11 Semelhante a Bcl-2/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Glucose/metabolismo , Humanos , Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Antígeno Neuro-Oncológico Ventral , Obesidade/etiologia , Obesidade/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estreptozocina
2.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019671

RESUMO

There are presently no reliable ways to quantify human pancreatic beta cell mass (BCM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. Furthermore, the lack of beta cell imaging hampers the evaluation of the impact of new drugs aiming to prevent beta cell loss or to restore BCM in diabetes. We presently discuss the potential value of BCM determination as a cornerstone for individualized therapies in diabetes, describe the presently available probes for human BCM evaluation, and discuss our approach for the discovery of novel beta cell biomarkers, based on the determination of specific splice variants present in human beta cells. This has already led to the identification of DPP6 and FXYD2ga as two promising targets for human BCM imaging, and is followed by a discussion of potential safety issues, the role for radiochemistry in the improvement of BCM imaging, and concludes with an overview of the different steps from pre-clinical validation to a first-in-man trial for novel tracers.


Assuntos
Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Células Secretoras de Insulina/ultraestrutura , Transplante das Ilhotas Pancreáticas/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Anticorpos de Domínio Único/química , 5-Hidroxitriptofano/química , 5-Hidroxitriptofano/farmacocinética , Animais , Biomarcadores/análise , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exenatida/química , Exenatida/farmacocinética , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Canais de Potássio/genética , Canais de Potássio/metabolismo , Compostos Radiofarmacêuticos/farmacocinética , Anticorpos de Domínio Único/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Tecnécio/química , Tecnécio/metabolismo , Tetrabenazina/análogos & derivados , Tetrabenazina/química , Tetrabenazina/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos
3.
Diabetologia ; 63(4): 825-836, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31873789

RESUMO

AIMS/HYPOTHESIS: Type 1 diabetes is characterised by a progressive decline in beta cell mass. This is also observed following implantation of pancreatic islet allografts, but there is no reliable information regarding the time course of beta cell loss. This is due to the limited availability of non-invasive pancreatic islet imaging techniques. We have previously described that dipeptidyl peptidase 6 (DPP6) is an alpha and beta cell-specific biomarker, and developed a camelid antibody (nanobody '4hD29') against it. We demonstrated the possibility to detect DPP6-expressing cells by single-photon emission computed tomography (SPECT)/ computed tomography (CT), but the correlation between the number of cells grafted and the SPECT signal was not assessed. Here, we investigate whether the 4hD29 nanobody allows us to detect different amounts of human pancreatic islets implanted into immune-deficient mice. In addition, we also describe the adaptation of the probe for use with positron emission tomography (PET). METHODS: DPP6 expression was assessed in human samples using tissue arrays and immunohistochemistry. The effect of the 4hD29 nanobody on cell death and glucose-stimulated insulin secretion was measured in EndoC-ßH1 cells and in human islets using Hoechst/propidium iodide staining and an anti-insulin ELISA, respectively. We performed in vivo SPECT imaging on severe combined immunodeficient (SCID) mice transplanted with different amounts of EndoC-ßH1 cells (2 × 106, 5 × 106 and 10 × 106 cells), human islets (1000 and 3000) or pancreatic exocrine tissue using 99mTc-labelled 4hD29 nanobody. This DPP6 nanobody was also conjugated to N-chlorosuccinimide (NCS)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), radiolabelled with either 67Ga (SPECT) or 68Ga (PET) and used in a proof-of-principle experiment to detect DPP6-expressing cells (Kelly neuroblastoma) grafted in SCID mice. RESULTS: The DPP6 protein is mainly expressed in pancreatic islets. Importantly, the anti-DPP6 nanobody 4hD29 allows non-invasive detection of high amounts of EndoC-ßH1 cells or human islets grafted in immunodeficient mice. This suggests that the probe must be further improved to detect lower numbers of islet cells. The 4hD29 nanobody neither affected beta cell viability nor altered insulin secretion in EndoC-ßH1 cells and human islets. The conversion of 4hD29 nanobody into a PET probe was successful and did not alter its specificity. CONCLUSIONS/INTERPRETATION: These findings suggest that the anti-DPP6 4hD29 nanobody may become a useful tool for the quantification of human islet grafts in mice and, pending future development, islet mass in individuals with diabetes.


Assuntos
Rastreamento de Células/métodos , Dipeptidil Peptidases e Tripeptidil Peptidases/imunologia , Células Secretoras de Insulina/metabolismo , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/diagnóstico por imagem , Anticorpos de Domínio Único/farmacologia , Animais , Contagem de Células , Células Cultivadas , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Feminino , Radioisótopos de Gálio/análise , Radioisótopos de Gálio/farmacocinética , Xenoenxertos , Humanos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Camundongos Transgênicos , Imagem Molecular/métodos , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Traçadores Radioativos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Anticorpos de Domínio Único/análise , Anticorpos de Domínio Único/química
4.
Molecules ; 23(9)2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134599

RESUMO

Non-invasive imaging and quantification of human beta cell mass remains a major challenge. We performed pre-clinical in vivo validation of a peptide previously discovered by our group, namely, P88 that targets a beta cell specific biomarker, FXYD2γa. We conjugated P88 with DOTA and then complexed it with GdCl3 to obtain the MRI (magnetic resonance imaging) contrast agent (CA) Gd-DOTA-P88. A scrambled peptide was used as a negative control CA, namely Gd-DOTA-Scramble. The CAs were injected in immunodeficient mice implanted with EndoC-ßH1 cells, a human beta cell line that expresses FXYD2γa similarly to primary human beta cells. The xenograft-bearing mice were analyzed by MRI. At the end, the mice were euthanized and the CA biodistribution was evaluated on the excised tissues by measuring the Gd concentration with inductively coupled plasma mass spectrometry (ICP-MS). The MRI and biodistribution studies indicated that Gd-DOTA-P88 accumulates in EndoC-ßH1 xenografts above the level observed in the background tissue, and that its uptake is significantly higher than that observed for Gd-DOTA-Scramble. In addition, the Gd-DOTA-P88 showed good xenograft-to-muscle and xenograft-to-liver uptake ratios, two potential sites of human islets transplantation. The CA shows good potential for future use to non-invasively image implanted human beta cells.


Assuntos
Meios de Contraste , Compostos Heterocíclicos , Células Secretoras de Insulina/metabolismo , Imageamento por Ressonância Magnética , Imagem Molecular , Compostos Organometálicos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Biomarcadores , Células CHO , Meios de Contraste/química , Cricetulus , Expressão Gênica , Compostos Heterocíclicos/química , Xenoenxertos , Humanos , Células Secretoras de Insulina/transplante , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Imagem Molecular/métodos , Compostos Organometálicos/química , ATPase Trocadora de Sódio-Potássio/genética
5.
Sci Rep ; 7(1): 15130, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29123178

RESUMO

There are presently no reliable ways to quantify endocrine cell mass (ECM) in vivo, which prevents an accurate understanding of the progressive beta cell loss in diabetes or following islet transplantation. To address this unmet need, we coupled RNA sequencing of human pancreatic islets to a systems biology approach to identify new biomarkers of the endocrine pancreas. Dipeptidyl-Peptidase 6 (DPP6) was identified as a target whose mRNA expression is at least 25-fold higher in human pancreatic islets as compared to surrounding tissues and is not changed by proinflammatory cytokines. At the protein level, DPP6 localizes only in beta and alpha cells within the pancreas. We next generated a high-affinity camelid single-domain antibody (nanobody) targeting human DPP6. The nanobody was radiolabelled and in vivo SPECT/CT imaging and biodistribution studies were performed in immunodeficient mice that were either transplanted with DPP6-expressing Kelly neuroblastoma cells or insulin-producing human EndoC-ßH1 cells. The human DPP6-expressing cells were clearly visualized in both models. In conclusion, we have identified a novel beta and alpha cell biomarker and developed a tracer for in vivo imaging of human insulin secreting cells. This provides a useful tool to non-invasively follow up intramuscularly implanted insulin secreting cells.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Células Secretoras de Insulina/citologia , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio/metabolismo , Transporte Proteico , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Anticorpos de Domínio Único/metabolismo , Coloração e Rotulagem/métodos , Animais , Humanos , Camundongos , Análise de Sequência de RNA
6.
Oncotarget ; 6(13): 11264-80, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25834103

RESUMO

Lipogenesis inhibition was reported to induce apoptosis and repress proliferation of cancer cells while barely affecting normal cells. Lipins exhibit dual function as enzymes catalyzing the dephosphorylation of phosphatidic acid to diacylglycerol and as co-transcriptional regulators. Thus, they are able to regulate lipid homeostasis at several nodal points. Here, we show that lipin-1 is up-regulated in several cancer cell lines and overexpressed in 50 % of high grade prostate cancers. The proliferation of prostate and breast cancer cells, but not of non-tumorigenic cells, was repressed upon lipin-1 knock-down. Lipin-1 depletion also decreased cancer cell migration through RhoA activation. Lipin-1 silencing did not significantly affect global lipid synthesis but enhanced the cellular concentration of phosphatidic acid. In parallel, autophagy was induced while AKT and ribosomal protein S6 phosphorylation were repressed. We also observed a compensatory regulation between lipin-1 and lipin-2 and demonstrated that their co-silencing aggravates the phenotype induced by lipin-1 silencing alone. Most interestingly, lipin-1 depletion or lipins inhibition with propranolol sensitized cancer cells to rapamycin. These data indicate that lipin-1 controls main cellular processes involved in cancer progression and that its targeting, alone or in combination with other treatments, could open new avenues in anticancer therapy.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Lipogênese , Fosfatidato Fosfatase/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Sirolimo/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Terapia de Alvo Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/antagonistas & inibidores , Fosfatidato Fosfatase/genética , Fosforilação , Propranolol/farmacologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Proteína S6 Ribossômica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Transfecção , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Metabolites ; 4(3): 831-78, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25257998

RESUMO

Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.

8.
Biosci Rep ; 33(2): e00023, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23249249

RESUMO

NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology.


Assuntos
Aminopeptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Mitocôndrias/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Estresse Oxidativo/genética , Serina Proteases/genética , Aminopeptidases/deficiência , Autofagia/genética , Células Cultivadas , Ceroide/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Lipofuscinoses Ceroides Neuronais/patologia , Serina Proteases/deficiência , Tripeptidil-Peptidase 1
9.
Am J Physiol Endocrinol Metab ; 302(9): E1123-41, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22354779

RESUMO

In adipocytes, mitochondrial uncoupling is known to trigger a triglyceride loss comparable with the one induced by TNFα, a proinflammatory cytokine. However, the impact of a mitochondrial uncoupling on the abundance/composition of mitochondria and its connection with triglyceride content in adipocytes is largely unknown. In this work, the effects of a mild mitochondrial uncoupling triggered by FCCP were investigated on the mitochondrial population of 3T3-L1 adipocytes by both quantitative and qualitative approaches. We found that mild mitochondrial uncoupling does not stimulate mitochondrial biogenesis in adipocytes but induces an adaptive cell response characterized by quantitative modifications of mitochondrial protein content. Superoxide anion radical level was increased in mitochondria of both TNFα- and FCCP-treated adipocytes, whereas mitochondrial DNA copy number was significantly higher only in TNFα-treated cells. Subproteomic analysis revealed that the abundance of pyruvate carboxylase was reduced significantly in mitochondria of TNFα- and FCCP-treated adipocytes. Functional study showed that overexpression of this major enzyme of lipid metabolism is able to prevent the triglyceride content reduction in adipocytes exposed to mitochondrial uncoupling or TNFα. These results suggest a new mechanism by which the effects of mitochondrial uncoupling might limit triglyceride accumulation in adipocytes.


Assuntos
Adipócitos/enzimologia , Mitocôndrias/metabolismo , Piruvato Carboxilase/metabolismo , Triglicerídeos/metabolismo , Células 3T3-L1 , Adaptação Fisiológica , Adipócitos/efeitos dos fármacos , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Tamanho Mitocondrial , Fator de Necrose Tumoral alfa/fisiologia , Desacopladores/farmacologia
10.
Cells ; 1(2): 168-203, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24710422

RESUMO

Macroautophagy has important physiological roles and its cytoprotective or detrimental function is compromised in various diseases such as many cancers and metabolic diseases. However, the importance of autophagy for cell responses has also been demonstrated in many other physiological and pathological situations. In this review, we discuss some of the recently discovered mechanisms involved in specific and unspecific autophagy related to mitochondrial dysfunction and organelle degradation, lipid metabolism and lipophagy as well as recent findings and evidence that link autophagy to unconventional protein secretion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA