Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 6(2): 304-322, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38337096

RESUMO

Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.


Assuntos
Proteostase , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição , Animais , Camundongos , Imunoprecipitação da Cromatina , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/genética
2.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33755598

RESUMO

BACKGROUNDEstimates of seroprevalence to SARS-CoV-2 vary widely and may influence vaccination response. We ascertained IgG levels across a single US metropolitan site, Chicago, from June 2020 through December 2020.METHODSParticipants (n = 7935) were recruited through electronic advertising and received materials for a self-sampled dried-blood spot assay through the mail or a minimal contact in-person method. IgG against the receptor-binding domain of SARS-CoV-2 was measured using an established highly sensitive and highly specific assay.RESULTSOverall seroprevalence was 17.9%, with no significant difference between method of contact. Only 2.5% of participants reported having had a diagnosis of COVID-19 based on virus detection, consistent with a 7-fold greater exposure to SARS-CoV-2 measured by serology than that detected by viral testing. The range of IgG level observed in seropositive participants from this community survey overlapped with the range of IgG levels associated with COVID-19 cases having a documented positive PCR test. From a subset of those who participated in repeat testing, half of seropositive individuals retained detectable antibodies for 3 to 4 months.CONCLUSIONQuantitative IgG measurements with a highly specific and sensitive assay indicated more widespread exposure to SARS-CoV-2 than observed by viral testing. The range of IgG concentrations produced from these asymptomatic exposures was similar to IgG levels occurring after documented nonhospitalized COVID-19, which were considerably lower than those produced from hospitalized COVID-19 cases. The differing ranges of IgG response, coupled with the rate of decay of antibodies, may influence response to subsequent viral exposure and vaccine.FundingNational Science Foundation grant 2035114, NIH grant 3UL1TR001422-06S4, NIH National Center for Advancing Translational Sciences grants UL1 TR001422 and UL1 TR002389, Dixon Family Foundation, Northwestern University Cancer Center (NIH grant P30 CA060553), and Walder Foundation's Chicago Coronavirus Assessment Network.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/imunologia , Adolescente , Adulto , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/virologia , Teste Sorológico para COVID-19/estatística & dados numéricos , Chicago/epidemiologia , Estudos de Coortes , Teste em Amostras de Sangue Seco/métodos , Teste em Amostras de Sangue Seco/estatística & dados numéricos , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Estudos Soroepidemiológicos , Adulto Jovem
3.
JACC Basic Transl Sci ; 4(2): 251-268, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31061927

RESUMO

The adult myocardium relies on oxidative metabolism. In ischemic myocardium, such as the embryonic heart, glycolysis contributes more prominently as a fuel source. The sulfonylurea receptor 2 (SUR2) was previously implicated in the normal myocardial transition from glycolytic to oxidative metabolism that occurs during adaptation to postnatal life. This receptor was now selectively deleted in adult mouse myocardium resulting in protection from ischemia reperfusion injury. SUR2-deleted cardiomyocytes had enhanced glucose uptake, and SUR2 forms a complex with the major glucose transporter. These data identify the SUR2 receptor as a target to shift cardiac metabolism to protect against myocardial injury.

4.
PLoS One ; 10(9): e0136679, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26325203

RESUMO

We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Creatina Quinase/metabolismo , Heterozigoto , Masculino , Camundongos , Doenças Musculares/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Proteínas Supressoras de Tumor/fisiologia
5.
Dev Biol ; 387(2): 179-90, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24440153

RESUMO

EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton.


Assuntos
Desenvolvimento Muscular/genética , Músculo Quadríceps/embriologia , Músculo Quadríceps/crescimento & desenvolvimento , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caveolina 3/metabolismo , Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/metabolismo , Mioblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico/fisiologia , Músculo Quadríceps/metabolismo , Sarcolema/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA