Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Circulation ; 149(15): 1183-1201, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38099436

RESUMO

BACKGROUND: Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow, and stable flow (s-flow) protects against atherosclerosis by incompletely understood mechanisms. METHODS: Our single-cell RNA-sequencing data using the mouse partial carotid ligation model was reanalyzed, which identified Heart-of-glass 1 (HEG1) as an s-flow-induced gene. HEG1 expression was studied by immunostaining, quantitive polymerase chain reaction, hybridization chain reaction, and Western blot in mouse arteries, human aortic endothelial cells (HAECs), and human coronary arteries. A small interfering RNA-mediated knockdown of HEG1 was used to study its function and signaling mechanisms in HAECs under various flow conditions using a cone-and-plate shear device. We generated endothelial-targeted, tamoxifen-inducible HEG1 knockout (HEG1iECKO) mice. To determine the role of HEG1 in atherosclerosis, HEG1iECKO and littermate-control mice were injected with an adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9] and fed a Western diet to induce hypercholesterolemia either for 2 weeks with partial carotid ligation or 2 months without the surgery. RESULTS: S-flow induced HEG1 expression at the mRNA and protein levels in vivo and in vitro. S-flow stimulated HEG1 protein translocation to the downstream side of HAECs and release into the media, followed by increased messenger RNA and protein expression. HEG1 knockdown prevented s-flow-induced endothelial responses, including monocyte adhesion, permeability, and migration. Mechanistically, HEG1 knockdown prevented s-flow-induced KLF2/4 (Kruppel-like factor 2/4) expression by regulating its intracellular binding partner KRIT1 (Krev interaction trapped protein 1) and the MEKK3-MEK5-ERK5-MEF2 pathway in HAECs. Compared with littermate controls, HEG1iECKO mice exposed to hypercholesterolemia for 2 weeks and partial carotid ligation developed advanced atherosclerotic plaques, featuring increased necrotic core area, thin-capped fibroatheroma, inflammation, and intraplaque hemorrhage. In a conventional Western diet model for 2 months, HEG1iECKO mice also showed an exacerbated atherosclerosis development in the arterial tree in both sexes and the aortic sinus in males but not in females. Moreover, endothelial HEG1 expression was reduced in human coronary arteries with advanced atherosclerotic plaques. CONCLUSIONS: Our findings indicate that HEG1 is a novel mediator of atheroprotective endothelial responses to flow and a potential therapeutic target.


Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Masculino , Feminino , Humanos , Camundongos , Animais , Placa Aterosclerótica/metabolismo , Pró-Proteína Convertase 9/metabolismo , Células Endoteliais/metabolismo , Hipercolesterolemia/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Membrana/metabolismo
2.
Curr Top Membr ; 87: 97-130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34696890

RESUMO

Hypercholesterolemia is a well-known pro-atherogenic risk factor and statin is the most effective anti-atherogenic drug that lowers blood cholesterol levels. However, despite systemic hypercholesterolemia, atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while the stable flow (s-flow) regions are spared. Given their predominant effects on endothelial function and atherosclerosis, we tested whether (1) statin and flow regulate the same or independent sets of genes and (2) statin can rescue d-flow-regulated genes in mouse artery endothelial cells in vivo. To test the hypotheses, C57BL/6 J mice (8-week-old male, n=5 per group) were pre-treated with atorvastatin (10mg/kg/day, Orally) or vehicle for 5 days. Thereafter, partial carotid ligation (PCL) surgery to induce d-flow in the left carotid artery (LCA) was performed, and statin or vehicle treatment was continued. The contralateral right carotid artery (RCA) remained exposed to s-flow to be used as the control. Two days or 2 weeks post-PCL surgery, endothelial-enriched RNAs from the LCAs and RCAs were collected and subjected to microarray gene expression analysis. Statin treatment in the s-flow condition (RCA+statin versus RCA+vehicle) altered the expression of 667 genes at 2-day and 187 genes at 2-week timepoint, respectively (P<0.05, fold change (FC)≥±1.5). Interestingly, statin treatment in the d-flow condition (LCA+statin versus LCA+vehicle) affected a limited number of genes: 113 and 75 differentially expressed genes at 2-day and 2-week timepoint, respectively (P<0.05, FC≥±1.5). In contrast, d-flow in the vehicle groups (LCA+vehicle versus RCA+vehicle) differentially regulated 4061 genes at 2-day and 3169 genes at 2-week timepoint, respectively (P<0.05, FC≥±1.5). Moreover, statin treatment did not reduce the number of flow-sensitive genes (LCA+statin versus RCA+statin) compared to the vehicle groups: 1825 genes at 2-day and 3788 genes at 2-week, respectively, were differentially regulated (P<0.05, FC≥±1.5). These results revealed that both statin and d-flow regulate expression of hundreds or thousands of arterial endothelial genes, respectively, in vivo. Further, statin and d-flow regulate independent sets of endothelial genes. Importantly, statin treatment did not reverse d-flow-regulated genes except for a small number of genes. These results suggest that both statin and flow play important independent roles in atherosclerosis development and highlight the need to consider their therapeutic implications for both.


Assuntos
Artérias Carótidas , Células Endoteliais , Animais , Atorvastatina/farmacologia , Modelos Animais de Doenças , Endotélio Vascular , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA