Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 23: 15330338241250298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706215

RESUMO

Objective: Ubiquitin-specific peptidase 39 (USP39) plays a carcinogenic role in many cancers, but little research has been conducted examining whether it is involved in head and neck squamous cell carcinoma (HNSCC). Therefore, this study explored the functional role of USP39 in HNSCC. Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify differentially expressed proteins (DEPs) between the HNSCC tumor and adjacent healthy tissues. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to assess the functional enrichment of DEPs. Immunohistochemistry was used to detect protein expression. The viability and migration of two HNSCC cell lines, namely CAL27 and SCC25, were detected using the cell counting kit-8 assay and a wound healing assay, respectively. Quantitative real-time PCR was used to detect the expression level of signal transducer and activator of transcription 1 (STAT1) mRNA. Results: LC-MS/MS results identified 590 DEPs between HNSCC and adjacent tissues collected from 4 patients. Through GO and KEGG pathway analyses, 34 different proteins were found to be enriched in the spliceosome pathway. The expression levels of USP39 and STAT1 were significantly higher in HNSCC tumor tissue than in adjacent healthy tissue as assessed by LC-MS/MS analysis, and the increased expression of USP39 and STAT1 protein was confirmed by immunohistochemistry in clinical samples collected from 7 additional patients with HNSCC. Knockdown of USP39 or STAT1 inhibited the viability and migration of CAL27 and SCC25 cells. In addition, USP39 knockdown inhibited the expression of STAT1 mRNA in these cells. Conclusion: Our findings indicated that USP39 knockdown may inhibit HNSCC viability and migration by suppressing STAT1 expression. The results of this study suggest that USP39 may be a potential new target for HNSCC clinical therapy or a new biomarker for HNSCC.


Assuntos
Movimento Celular , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Fator de Transcrição STAT1 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteases Específicas de Ubiquitina , Humanos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Movimento Celular/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Proteases Específicas de Ubiquitina/metabolismo , Proteases Específicas de Ubiquitina/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Sobrevivência Celular/genética , Espectrometria de Massas em Tandem , Proliferação de Células , Cromatografia Líquida , Feminino , Masculino , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Proteômica/métodos
2.
Biomolecules ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38540713

RESUMO

The impaired invasion ability of trophoblast cells is related to the occurrence of preeclampsia (PE). We previously found that pregnancy-specific beta-1-glycoprotein 1 (PSG1) levels were decreased in the serum of individuals with early-onset preeclampsia (EOPE). This study investigated the effect of PSG1 on Orai1-mediated store-operated calcium entry (SOCE) and the Akt signaling pathway in human trophoblast cell migration. An enzyme-linked immunosorbent assay (ELISA) was used to determine the level of PSG1 in the serum of pregnant women with EOPE. The effects of PSG1 on trophoblast proliferation and migration were examined using cell counting kit-8 (CCK8) and wound healing experiments, respectively. The expression levels of Orai1, Akt, and phosphorylated Akt (p-Akt) were determined through Western blotting. The results confirmed that the serum PSG1 levels were lower in EOPE women than in healthy pregnant women. The PSG1 treatment upregulated the protein expression of Orai1 and p-Akt. The selective inhibitor of Orai1 (MRS1845) weakened the migration-promoting effect mediated by PSG1 via suppressing the Akt signaling pathway. Our findings revealed one of the mechanisms possibly involved in EOPE pathophysiology, which was that downregulated PSG1 may reduce the Orai1/Akt signaling pathway, thereby inhibiting trophoblast migration. PSG1 may serve as a potential target for the treatment and diagnosis of EOPE.


Assuntos
Amarelo de Eosina-(YS)/análogos & derivados , Fosfatidiletanolaminas , Pré-Eclâmpsia , Proteínas Proto-Oncogênicas c-akt , Feminino , Gravidez , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pré-Eclâmpsia/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição , Movimento Celular/fisiologia , Glicoproteínas , Proliferação de Células/fisiologia
3.
Proc Natl Acad Sci U S A ; 109(38): 15419-24, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949674

RESUMO

T cells play a critical role in tumor immunosurveillance by eliminating newly transformed somatic cells. However, tumor cell variants can escape from immunological control after immunoediting, leading to tumor progression. Whether and how T cells respond to tumor growth remain unclear. Here, we found that tumor-infiltrating T cells exhibited persistently up-regulated expression of the activator protein 1 (AP-1) subunit c-Fos during tumor progression. The ectopic expression of c-Fos in T cells exacerbated tumor growth, whereas the T-cell-specific deletion of c-Fos reduced tumor malignancy. This unexpected immunosuppressive effect of c-Fos was mediated through the induced expression of immune inhibitory receptor programmed death 1 (PD-1) via the direct binding of c-Fos to the AP-1-binding site in the Pdcd1 (gene encoding PD-1) promoter. A knock-in mutation of this binding site abrogated PD-1 induction, augmented antitumor T-cell function and repressed tumor growth. Taken together, these findings indicate that T-cell c-Fos subsequently induces PD-1 expression in response to tumor progression and that disrupting such induction is essential for repression of tumor growth.


Assuntos
Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/citologia , Fator de Transcrição AP-1/fisiologia , Animais , Sítios de Ligação , Progressão da Doença , Citometria de Fluxo , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Transplante de Neoplasias , Neoplasias/imunologia , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA