Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 420, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811923

RESUMO

BACKGROUND: Osteonecrosis of the femoral head (ONFH) is a common clinical disease. Improper treatment can lead to femoral head collapse and hip joint dysfunction. Core decompression is particularly important for early ONFH. However, subtrochanteric fractures after core decompression cause some clinical problems. CASE PRESENTATION: This article describes a 34-year-old male patient with early ONFH. After core decompression, he suffered a subtrochanteric fracture of the femur while bearing weight on the affected limb when going up stairs. He was subsequently treated with open reduction and intramedullary nail fixation. CONCLUSION: When core decompression is used to treat ONFH, the location or size of the drill hole, whether a tantalum rod or bone is inserted, and partial weight-bearing of the affected limb may directly affect whether a fracture occurs after surgery. It is hoped that this case report can provide a reference for clinical orthopedic surgeons in the treatment of early ONFH.


Assuntos
Descompressão Cirúrgica , Necrose da Cabeça do Fêmur , Fraturas do Quadril , Humanos , Masculino , Adulto , Descompressão Cirúrgica/métodos , Necrose da Cabeça do Fêmur/cirurgia , Necrose da Cabeça do Fêmur/etiologia , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Fraturas do Quadril/cirurgia , Fraturas do Quadril/diagnóstico por imagem , Fixação Intramedular de Fraturas/métodos , Resultado do Tratamento , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia
2.
Foods ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611376

RESUMO

During the storage and transportation processes, the occurrence of core browning in 'Yali' pear fruit due to adversity injury can be easily mitigated by implementing different cooling methods, especially in advanced maturity fruits. In this study, 'Yali' pears at an advanced maturity stage were subjected to slow cooling and rapid cooling treatment. The quality-related physiological percentage and severity, and the rate of good fruits were determined, and RNA-seq was used to explore the effects of different cooling methods on pathways related to core browning in advanced-maturity pears at the transcriptional level. The results indicated that, compared with slow cooling treatment, rapid cooling significantly inhibited core browning in advanced-maturity 'Yali' pears. Measurements of quality-related physiological indexes suggested that rapid cooling treatment led to higher SSC content, firmness, L* value, and b* value, indicating better brightness, coloration, and higher soluble solid content, which are desirable for commercial sale. Rapid cooling effectively suppressed the physiological metabolism of 'Yali' pears, delaying fruit senescence compared with slow-cooling treatment. Furthermore, the RNA-Seq sequencing results revealed that pathways related to browning are involved in hormone signal transduction pathways, which are associated with resistance and aging processes of pear fruit. In summary, rapid cooling treatment delayed the core browning of advanced maturity of 'Yali' pears, indicating that the core browning of 'Yali' pears is related to the cooling method, and the mechanism of rapid cooling in reducing the core browning of advanced maturity of 'Yali' pears was by delaying the aging process of the fruit. This provides a new perspective for alleviating the core browning of advanced-maturity 'Yali' pears during storage and transportation, and provides a theoretical reference for studying the mechanism of core browning of 'Yali' pears.

3.
Front Surg ; 11: 1338719, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476758

RESUMO

Background: Intramedullary Spinal Cord Abscess (ISCA) is an uncommon infectious disease of the central nervous system. Since its first report in 1830, there have been very few documented cases associated with it. Here, we present a case of ISCA with cerebral abscess caused by Klebsiella pneumoniae. Case presentation: A 55-year-old male patient presented with head and neck pain, fever, and left limb weakness for 5 days. The diagnosis of ISCA with brain abscess caused by Klebsiella pneumoniae was confirmed through sputum culture, cerebrospinal fluid gene test, pus culture, and magnetic resonance imaging (MRI) as well as computerized tomography (CT) scan. The patient had a history of pulmonary tuberculosis and old tuberculous foci were observed in the lung. Initially considering tuberculosis as the cause due to unclear etiology at that time, anti-tuberculosis treatment was administered. However, due to rapid deterioration in the patient's condition and severe neurological dysfunction within a short period of time after admission, surgical intervention including incision and drainage for intramedullary abscess along with removal of brain abscess was performed. Subsequent postoperative follow-up showed improvement in both symptoms and imaging findings. Conclusion: Early diagnosis of central nervous system (CNS) abscess coupled with prompt surgical intervention and administration of appropriate antibiotics are crucial factors in preventing disease progression and reducing mortality rates.

4.
Cell Death Dis ; 15(3): 233, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521813

RESUMO

AURKA is an established target for cancer therapy; however, the efficacy of its inhibitors in clinical trials is hindered by differential response rates across different tumor subtypes. In this study, we demonstrate AURKA regulates amino acid synthesis, rendering it a vulnerable target in KEAP1-deficient non-small cell lung cancer (NSCLC). Through CRISPR metabolic screens, we identified that KEAP1-knockdown cells showed the highest sensitivity to the AURKA inhibitor MLN8237. Subsequent investigations confirmed that KEAP1 deficiency heightens the susceptibility of NSCLC cells to AURKA inhibition both in vitro and in vivo, with the response depending on NRF2 activation. Mechanistically, AURKA interacts with the eIF2α kinase GCN2 and maintains its phosphorylation to regulate eIF2α-ATF4-mediated amino acid biosynthesis. AURKA inhibition restrains the expression of asparagine synthetase (ASNS), making KEAP1-deficient NSCLC cells vulnerable to AURKA inhibitors, in which ASNS is highly expressed. Our study unveils the pivotal role of AURKA in amino acid metabolism and identifies a specific metabolic indication for AURKA inhibitors. These findings also provide a novel clinical therapeutic target for KEAP1-mutant/deficient NSCLC, which is characterized by resistance to radiotherapy, chemotherapy, and targeted therapy.


Assuntos
Aurora Quinase A , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Asparagina , Aurora Quinase A/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
5.
Nat Struct Mol Biol ; 31(2): 219-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177680

RESUMO

Morphological rearrangement of the endoplasmic reticulum (ER) is critical for metazoan mitosis. Yet, how the ER is remodeled by the mitotic signaling remains unclear. Here, we report that mitotic Aurora kinase A (AURKA) employs a small GTPase, Rab1A, to direct ER remodeling. During mitosis, AURKA phosphorylates Rab1A at Thr75. Structural analysis demonstrates that Thr75 phosphorylation renders Rab1A in a constantly active state by preventing interaction with GDP-dissociation inhibitor (GDI). Activated Rab1A is retained on the ER and induces the oligomerization of ER-shaping protein RTNs and REEPs, eventually triggering an increase of ER complexity. In various models, from Caenorhabditis elegans and Drosophila to mammals, inhibition of Rab1AThr75 phosphorylation by genetic modifications disrupts ER remodeling. Thus, our study reveals an evolutionarily conserved mechanism explaining how mitotic kinase controls ER remodeling and uncovers a critical function of Rab GTPases in metaphase.


Assuntos
Aurora Quinase A , Mitose , Animais , Fosforilação , Aurora Quinase A/metabolismo , Transdução de Sinais , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo
6.
Front Med (Lausanne) ; 10: 1235023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790125

RESUMO

Background: The effectiveness of N-acetylcysteine (NAC) in treating contrast-induced nephropathy (CIN) has been the subject of conflicting meta-analyses, but the strength of the evidence for these correlations between NAC use and CIN has not been measured overall. Objective: To evaluate the data from randomized clinical studies (RCTs) that examined the relationships between NAC use and CIN in meta-analyses. Methods: Between the creation of the database and April 2023, searches were made in PubMed, Cochrane Library, EMBASE, and Web of Science. N-acetylcysteine, contrast-induced nephropathy, or contrast-induced renal disease were among the search keywords used, along with terms including systematic review and meta-analysis. The Assessment of Multiple Systematic Reviews, version 2, which assigned grades of extremely low, low, moderate, or high quality to each meta-analysis's scientific quality, was used to evaluate each meta-analysis. The confidence of the evidence in meta-analyses of RCTs was evaluated using the Grading of Recommendation, Assessment, Development and Evaluations method, with evidence being rated as very low, low, moderate, or high. Results: In total, 493 records were screened; of those, 46 full-text articles were assessed for eligibility, and 12 articles were selected for evidence synthesis as a result of the screening process. Based on the pooled data, which was graded as moderate-quality evidence, it can be concluded that NAC can decrease CIN (OR 0.72, 95% CI 0.65-0.79, p < 0.00001) and blood levels of serum creatinine (MD -0.09, 95% CI -0.17 to -0.01, p = 0.03). In spite of this, there were no associations between NAC and dialysis requirement or mortality in these studies. Conclusion: The results of this umbrella review supported that the renal results were enhanced by NAC. The association was supported by moderate-quality evidence. Systematic review registration: [https://clinicaltrials.gov/], identifier [CRD42022367811].

7.
BMC Cardiovasc Disord ; 23(1): 461, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37710181

RESUMO

BACKGROUND: Acute arterial embolism due to tumor embolus is a rare complication in cancer patients, even rarer is lung tumor embolization leading to acute myocardial infarction. We report a patient who had a diagnosis of acute myocardial infarction(AMI)which was brought on by a coronary artery embolism by a metastatic lung cancer tumor. Clinicians need to be aware that tumor embolism can result in AMI. CASE PRESENTATION: An 80-yeal-old male patient presented with persistent chest pain for 2 h and his electrocardiogram(ECG)showed anterior ST-segment elevation myocardial infarction. Instead of implanting a stent, thrombus aspiration was performed. Pathological examination of coronary artery thrombosis showed that a few sporadic atypical epithelial cells were scattered in the thrombus-like tissue. Combined with immune phenotype and clinical history, metastatic squamous cell carcinoma is more likely. CONCLUSIONS: We report a rare case of a patient who was diagnosed of AMI due to a coronary artery embolism by a metastatic mass from lung cancer. Since there is no evidence-based protocol available for the treatment of isolated coronary thrombosis, we used thrombus aspiration to treat thrombosis rather than implanting a stent.


Assuntos
Doença da Artéria Coronariana , Trombose Coronária , Embolia , Neoplasias Pulmonares , Infarto do Miocárdio , Humanos , Masculino , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/terapia , Neoplasias Pulmonares/complicações , Trombose Coronária/diagnóstico por imagem , Trombose Coronária/etiologia , Trombose Coronária/terapia
8.
Luminescence ; 38(9): 1647-1653, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37408325

RESUMO

A dual-function fluorescent probe (Probe 1) was developed in this work for the separate detection of pH value and formaldehyde (HCHO). Probe 1 could recognize HCHO and the pH value from the amino group. The colour of the probe solution was changed from grey blue to light blue with the increase in the pH value, and luminous intensity became larger with the increase in formaldehyde concentration. The curve function relationship between fluorescence intensity and the pH value was also determined. A smartphone containing a colour detector for imaging was used to record the values of the three primary colours (R value, G value, and B value) for the probe solution in formaldehyde. Importantly, there was a linear functional relationship between the B*R/G value with HCHO concentration. Therefore, the probe could be used as a rapid tool for the detection of formaldehyde. More importantly, Probe 1 was successfully used to detect formaldehyde in an actual distilled liquor sample.


Assuntos
Corantes Fluorescentes , Formaldeído , Concentração de Íons de Hidrogênio
9.
Signal Transduct Target Ther ; 8(1): 275, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37463926

RESUMO

Cancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity. Specifically, neural signal norepinephrine potentiates the stemness of proximal cancer cells by activating cAMP-CRE axis, where ATF1 serves as a conserved hub. Upon activation by norepinephrine, ATF1 potentiates cancer stemness by coordinated trans-activation of both nuclear pluripotency factors MYC/NANOG and mitochondrial biogenesis regulators NRF1/TFAM, thereby orchestrating nuclear reprograming and mitochondrial rejuvenating. Accordingly, single-cell transcriptomes confirm the coordinated activation of nuclear pluripotency with mitochondrial biogenesis in cancer stem-like cells. These findings elucidate that cancer cell acquires stemness via a norepinephrine-ATF1 driven nucleus-mitochondria collaborated program, suggesting a spatialized stemness acquisition by hijacking microenvironmental neural signals.


Assuntos
Neoplasias , Fatores de Transcrição , Núcleo Celular/genética , Núcleo Celular/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Neoplasias/metabolismo
10.
Asian J Surg ; 46(9): 4101-4102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37147258

RESUMO

BACKGROUND: Von Hippel-Lindau disease (VHL) is an autosomal dominant, inherited syndrome with variants in the VHL gene causing predisposition to multi-organ benign and malignant neoplasms. Approximately 95-100% of individuals with clinical VHL receive a positive result when they undergo standard genetic testing on DNA extracted from blood. Here, we present the case of an individual with a clinical diagnosis of VHL disease where peripheral blood DNA analysis did not detect a VHL variant. CASE PRESENTATION: Our patient is a-38-year-old male whose chief complaints are right shoulder and back pain for almost a year. Cranial Magnetic Resonance Imaging (MRI) showed multiple space occupying lesions in cerebellar hemisphere. Spine MRI showed the formation of intraspinal cavities in cervical 5 to thoracic 10 plane, enhanced lesions in the thoracic 8 vertebral plane. Abdominal MRI showed very weakly enhanced nodules on the left kidney and multiple cystic lesions of pancreas. Our case, without a family history, fulfilled clinical criteria for VHL but initially received negative germline VHL results through multigene panel testing on DNA extracted from peripheral blood leukocytes. One year later, the second peripheral blood send for germline molecular genetic testing was also negative. CONCLUSION: Although the patient tested negative for the classic VHL gene, the possibility of somatic mosaicism could not be ruled out. Instead of repeating classic testing, next-generation sequencing, multi-tissue analysis or/and genetic testing of offspring is an efficient tool to identify VHL mosaic mutation.


Assuntos
Neoplasias Renais , Doença de von Hippel-Lindau , Masculino , Humanos , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Análise Mutacional de DNA , Mutação , Doença de von Hippel-Lindau/diagnóstico , Doença de von Hippel-Lindau/genética , Neoplasias Renais/patologia
11.
Neural Regen Res ; 18(8): 1847-1851, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36751815

RESUMO

Our previous studies have shown that long noncoding RNA (lncRNA) H19 is upregulated in injured rat sciatic nerve during the process of Wallerian degeneration, and that it promotes the migration of Schwann cells and slows down the growth of dorsal root ganglion axons. However, the mechanism by which lncRNA H19 regulates neural repair and regeneration after peripheral nerve injury remains unclear. In this study, we established a Sprague-Dawley rat model of sciatic nerve transection injury. We performed in situ hybridization and found that at 4-7 days after sciatic nerve injury, lncRNA H19 was highly expressed. At 14 days before injury, adeno-associated virus was intrathecally injected into the L4-L5 foramina to disrupt or overexpress lncRNA H19. After overexpression of lncRNA H19, the growth of newly formed axons from the sciatic nerve was inhibited, whereas myelination was enhanced. Then, we performed gait analysis and thermal pain analysis to evaluate rat behavior. We found that lncRNA H19 overexpression delayed the recovery of rat behavior function, whereas interfering with lncRNA H19 expression improved functional recovery. Finally, we examined the expression of lncRNA H19 downstream target SEMA6D, and found that after lncRNA H19 overexpression, the SEMA6D protein level was increased. These findings suggest that lncRNA H19 regulates peripheral nerve degeneration and regeneration through activating SEMA6D in injured nerves. This provides a new clue to understand the role of lncRNA H19 in peripheral nerve degeneration and regeneration.

12.
J Plant Physiol ; 280: 153877, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36436240

RESUMO

Oleocellosis is a physiological disorder in citrus fruit and causes extensive economic damage due to the surface blemishes it creates. It was reported that oleocellosis always occurs during preharvest maturation and postharvest storage. In the present study, the oleocellosis incidence of Jincheng orange, Navel orange and Ponkan were found to be different during preharvest maturation, however, no differences were found during postharvest storage. Additionally, it was interesting that the outbreak period of oleocellosis incidence was 0-12 d during postharvest storage. Climate change has been reported as a factor promoting oleocellosis development. However, little information is available regarding how primary metabolites and the expression of genes involved in sugar, organic acid and free amino acid metabolism in citrus change to adjust to new environments. Metabolic profiling obtained by gas chromatography-mass spectrometry (GC‒MS) and amino acid analysis showed that the accumulations of fructose, glucose, sucrose, maltose, mannose, citric acid, α-ketoglutarate, 2-keto-d-gluconic acid, glutamate, valine, glycine and threonine might play major roles in adaptation to changes in oleocellosis peels for three types of citrus fruit. However, decreased contents of malic acid, gluconic acid and proline were observed, possibly due to consumption in energy metabolism or reflecting a unique characteristic in this disorder. Regarding gene expression in primary metabolism pathways obtained by high-throughput mRNA sequencing (RNA-Seq) technology, upregulated genes encoding alpha-glucosidase, beta-glucosidase, beta-fructofuranosidase, alpha-amylase, beta-amylase, malate dehydrogenase, CTP synthase (glutamine hydrolysing), serine-glyoxylate transaminase, serine/glycine hydroxymethyltransferase and proline dehydrogenase were the main changes in this disorder.


Assuntos
Citrus sinensis , Citrus , Aminoácidos/metabolismo , Citrus/genética , Citrus/metabolismo , Açúcares/metabolismo , Citrus sinensis/metabolismo , Glicina/metabolismo , Serina/análise , Serina/genética , Serina/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas
13.
Cell Death Dis ; 13(7): 609, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835740

RESUMO

Transmembrane-4 L-six family member-1 (TM4SF1) is a member of the L6 family and functions as a signal transducer to regulate tumor cell behaviors. However, the function and mechanism of TM4SF1 in esophageal squamous cell carcinoma (ESCC) metastasis remains unclear. Here, we find that TM4SF1 expression is increased and positively correlated with clinical TNM stage, N classification, differentiation, tumor size, and poor prognosis in ESCC patients. Interestingly, we demonstrate that TM4SF1 promotes ESCC cell adhesion, spreading, migration, and invasion, but not cell proliferation, in a laminin-dependent manner by interacting with integrin α6. Mechanistically, the TM4SF1/integrin α6/FAK axis signal pathway mediates cell migration under laminin-coating condition. Inhibiting FAK or knocking down TM4SF1 can attenuate TM4SF1-mediated cell migration and lung metastasis. Clinically, the TM4SF1/integrin α6/FAK axis positively correlates with ESCC. Altogether, these findings reveal a new mechanism of TM4SF1 in promoting ESCC metastasis via binding to integrin α6 and suggest that the cross-talk between TM4SF1 and integrin α6 may serve as a therapeutic target for ESCC.


Assuntos
Antígenos de Superfície , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Integrina alfa6 , Proteínas de Neoplasias , Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Laminina/genética , Laminina/metabolismo , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
14.
Genome Res ; 32(6): 1026-1041, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609991

RESUMO

Polypeptides encoded by long noncoding RNAs (lncRNAs) are a novel class of functional molecules. However, whether these hidden polypeptides participate in the TP53 pathway and play a significant biological role is still unclear. Here, we discover that TP53-regulated lncRNAs can encode peptides, two of which are functional in various human cell lines. Using ribosome profiling and RNA-seq approaches in HepG2 cells, we systematically identified more than 300 novel TP53-regulated lncRNAs and further confirmed that 15 of these TP53-regulated lncRNAs encode peptides. Furthermore, several peptides were validated by mass spectrometry. Ten of the novel translational lncRNAs are directly inducible by TP53 in response to DNA damage. We show that the TP53-inducible peptides TP53LC02 and TP53LC04, but not their lncRNAs, can suppress cell proliferation. TP53LC04 peptide also has a function associated with cell proliferation by regulating the cell cycle in response to DNA damage. This study shows that TP53-regulated lncRNAs can encode new functional peptides, leading to the expansion of the TP53 tumor-suppressor network and providing novel potential targets for cancer therapy.


Assuntos
RNA Longo não Codificante , Proliferação de Células/genética , Humanos , Peptídeos/metabolismo , Peptídeos/farmacologia , RNA Longo não Codificante/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Food Chem ; 383: 132594, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35255366

RESUMO

As the iron content of wine affects the wine quality, a highly selective and simple detection method is needed to detect the iron content in wine. A colourimetric fluorescent probe (BTBAP probe) for the detection of total iron in wine was developed. The quantitative range of Fe2+/3+ content detected with the probe was 0 to 200 µM with a limit of detection (LOD) of 1.16 µM. After 10 min of Fe2+/3+ addition, the luminescence intensity of the BTBAP probe solution gradually decreased with increasing Fe2+/3+ concentration. Moreover, the B and G values of the luminescence photos were linearly related to the concentration of Fe2+/3+ (0-200 µM). BTBAP probe was successfully applied for rapid determination of the Fe2+/3+ concentration of wine. This work demonstrates that BTBAP probe is an excellent tool for rapid determination of the total iron content of wine using only a smartphone and no other professional equipment.


Assuntos
Corantes Fluorescentes , Vinho , Colorimetria , Ferro/análise , Limite de Detecção , Vinho/análise
16.
Aging (Albany NY) ; 14(1): 389-409, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35021154

RESUMO

Chordin-like 1 (CHRDL1), an inhibitor of bone morphogenetic proteins(BMPs), has been recently reported to participate in the progression of numerous tumors, however, its role in lung adenocarcinoma (LUAD) remains unclear. Our study aimed to demonstrate relationship between CHRDL1 and LUAD based on data from The Cancer Genome Atlas (TCGA). Among them, CHRDL1 expression revealed promising power for distinguishing LUAD tissues form normal sample. Low CHRDL1 was correlated with poor clinicopathologic features, including high T stage (OR=0.45, P<0.001), high N stage (OR=0.57, P<0.003), bad treatment effect (OR=0.64, P=0.047), positive tumor status (OR=0.63, P=0.018), and TP53 mutation (OR=0.49, P<0.001). The survival curve illustrated that low CHRDL1 was significantly correlative with a poor overall survival (HR=0.60, P<0.001). At multivariate Cox regression analysis, CHRDL1 remained independently correlative with overall survival. GSEA identified that the CHRDL1 expression was related to cell cycle and immunoregulation. Immune infiltration analysis suggested that CHRDL1 was significantly correlative with 7 kinds of immune cells. Immunohistochemical validation showed that CHRDL1 was abnormally elevated and negatively correlated with Th2 cells in LUAD tissues. In conclusion, CHRDL1 might become a novel prognostic biomarker and therapy target in LUAD. Moreover, CHRDL1 may improve the effectiveness of immunotherapy by regulating immune infiltration.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Bases de Dados Genéticas , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Idoso , Biomarcadores Tumorais , Proteínas do Olho/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Sobrevida , Células Th2
17.
Cell Death Dis ; 12(10): 893, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593753

RESUMO

Uncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy. In this study, we performed genome-wide CRISPR/Cas9-based screening to identify vulnerable biological processes associated with alisertib in breast cancer MDA-MB-231 cells. The result indicated that alisertib treated cancer cells are more sensitive to the genetic perturbation of oxidative phosphorylation (OXPHOS). Mechanistic investigation indicated that alisertib treatment, as well as other mitotic kinase inhibitors, rapidly reduces the intracellular ATP level to generate a status that is highly addictive to OXPHOS. Furthermore, the combinational inhibition of mitotic kinase and OXPHOS by alisertib, and metformin respectively, generates severe energy exhaustion in mitotic cells that consequently triggers cell death. The combination regimen also enhanced tumor regression significantly in vivo. This suggests that targeting OXPHOS by metformin is a potential strategy for promoting the therapeutic effects of mitotic kinase inhibitors through the joint targeting of mitosis and cellular energy homeostasis.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Mitose , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Animais , Aurora Quinase A/metabolismo , Azepinas/farmacologia , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Citosol/metabolismo , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Feminino , Homeostase/efeitos dos fármacos , Humanos , Metformina/farmacologia , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitose/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Pirimidinas/farmacologia
18.
Am J Transl Res ; 13(7): 7882-7889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34377266

RESUMO

PURPOSE: To analyze the effects of different routes of dexmedetomidine administration on early cognitive function following inguinal hernia repair. METHODS: A total of 83 patients with pediatric inguinal hernias admitted to our hospital from January 2018 to October 2020 were divided into control group (CNG, n = 41) and observation group (OG, n = 42) by random number table. The OG was given 2 µg/kg of dexmedetomidine hydrochloride by intranasal administration, and the CNG was treated with 0.5 µg/kg of dexmedetomidine hydrochloride via intravenous (IV) infusion pump. The hemodynamics, condition of anesthesia, awakening, and safety were compared between the two groups. RESULTS: Systolic blood pressure and oxygen saturation levels at T1 and T2 in the OG were not different from those in the CNG (P > 0.05), and heart rates in the OG were all higher than those in the CNG (P < 0.05). The incidence of emergence agitation during awakening was 4.76% in the OG, which was lower than 21.95% compared with the CNG (P < 0.05). Ramsay sedation scores at 15 and 30 min after awakening in the OG were higher than those in the CNG, and PAED scores in the OG were lower than those in the CNG (P < 0.05). Cognitive, language, and motor scores in the OG were higher than those in the CNG at 3 days after surgery (P < 0.05), and the incidence of cognitive dysfunction was 4.76% in the OG at 3 days after surgery, which was lower compared with 21.95% in the CNG (P < 0.05). CONCLUSION: Application of dexmedetomidine hydrochloride by intranasal administration or intravenous infusion before induction can ensure rapid postoperative awakening of the children without causing significant fluctuations in blood pressure and oxygen saturation, and both methods have a high safety profile. However, intranasal administration results in more satisfactory sedation, less postoperative agitation upon awakening, and reduces postoperative cognitive dysfunction.

19.
Oxid Med Cell Longev ; 2021: 5572088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34035876

RESUMO

BACKGROUND: A disintegrin and metalloproteinase 17 (ADAM17) is a transmembrane protein that is widely expressed in various tissues; it mediates the shedding of many membrane-bound molecules, involving cell-cell and cell-matrix interactions. We investigated the role of ADAM17 within mouse cardiac fibroblasts (mCFs) in heart fibrosis. METHODS: mCFs were isolated from the hearts of neonatal mice. Effects of ADAM17 on the differentiation of mCFs towards myofibroblasts and their fibrotic behaviors following induction with TGF-ß1 were examined. The expression levels of fibrotic proteins, such as collagen I and α-SMA, were assessed by qRT-PCR analysis and western blotting. Cell proliferation and migration were measured using the CCK-8 and wound healing assay. To identify the target gene for ADAM17, the protein levels of the components of endoplasmic reticulum (ER) stress and the PINK1/Parkin pathway were assessed following ADAM17 silencing. The effects of ADAM17 silencing or treatment with thapsigargin, a key stimulator of acute ER stress, on mCFs proliferation, migration, and collagen secretion were also examined. In vivo, we used a mouse model of cardiac fibrosis established by left anterior descending artery ligation; the mice were administered oral gavage with a selective ADAM17 inhibitor (TMI-005) for 4 weeks after the operation. RESULTS: We found that the ADAM17 expression levels were higher in fibrosis heart tissues and TGF-ß1-treated mCFs. The ADAM17-specific siRNAs decreased TGF-ß1-induced increase in the collagen secretion, proliferation, and migration of mCFs. Knockdown of ADAM17 reduces the activation of mCFs by inhibiting the ATF6 branch of ER stress and further activating mitophagy. Moreover, decreased ADAM17 expression also ameliorated cardiac fibrosis and improved heart function. CONCLUSIONS: This study highlights that mCF ADAM17 expression plays a key role in cardiac fibrosis by regulating ER stress and mitophagy, thereby limiting fibrosis and improving heart function. Therefore, ADAM17 downregulation, within the physiological range, could exert protective effects against cardiac fibrosis.


Assuntos
Proteína ADAM17/metabolismo , Fibrose/fisiopatologia , Miocárdio/patologia , Animais , Diferenciação Celular , Regulação para Baixo , Estresse do Retículo Endoplasmático , Humanos , Masculino , Camundongos , Mitofagia , Transfecção
20.
J Agric Food Chem ; 69(20): 5671-5682, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33988021

RESUMO

Penicillium digitatum is the primary pathogen that causes serious yield losses worldwide. In our previous study, CsWRKY transcription factors (TFs) and some genes associated with immunity were identified in citrus fruits after P. digitatum infection, but little information is available in the literature on the mechanisms of TFs in citrus disease resistance. In this study, the possible mechanisms of CsWRKY65 participating in the establishment of disease resistance were investigated. Results show that CsWRKY65 was a transcriptional activator in the nucleus. The dual-luciferase transient assays and electrophoretic mobility shift assays showed that CsWRKY65 bound with CsRbohB, CsRbohD, CsCDPK33, and CsPR10 promoters to activate gene transcription. Besides, the transient overexpression of CsWRKY65 induced reactive oxygen species accumulation and increased PR gene expression in Nicotiana benthamiana leaves. The transient overexpression of CsWRKY65 in the citrus peel enhanced the disease resistance against P. digitatum. In conclusion, CsWRKY65 is likely to be involved in regulating the disease resistance to P. digitatum of citrus fruits by directly activating the expressions of CsRbohB, CsRbohD, CsCDPK33, and CsPR10. This study provides new information for the mechanism of citrus WRKY TFs participating in the establishment of disease resistance.


Assuntos
Citrus , Penicillium , Citrus/genética , Resistência à Doença/genética , Penicillium/genética , Doenças das Plantas/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA