Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 308: 122538, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564889

RESUMO

Surface-enhanced Raman spectroscopy (SERS) nanotags have garnered much attention as promising bioimaging contrast agent with ultrahigh sensitivity, but their clinical translation faces challenges including biological and laser safety. As breast sentinel lymph node (SLN) imaging agents, SERS nanotags used by local injection and only accumulation in SLNs, which were removed during surgery, greatly reduce biological safety concerns. But their clinical translation lacks pilot demonstration on large animals close to humans. The laser safety requires irradiance below the maximum permissible exposure threshold, which is currently not achievable in most SERS applications. Here we report the invention of the core-shell SERS nanotags with ultrahigh brightness (1 pM limit of detection) at the second near-infrared (NIR-II) window for SLN identification on pre-clinical animal models including rabbits and non-human primate. We for the first time realize the intraoperative SERS-guided SLN navigation under a clinically safe laser (1.73 J/cm2) and identify multiple axillary SLNs on a non-human primate. No evidence of biosafety issues was observed in systematic examinations of these nanotags. Our study unveils the potential of NIR-II SERS nanotags as appropriate SLN tracers, making significant advances toward the accurate positioning of lesions using the SERS-based tracer technique.


Assuntos
Linfonodo Sentinela , Análise Espectral Raman , Animais , Análise Espectral Raman/métodos , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Coelhos , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Biomaterials ; 300: 122211, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37379685

RESUMO

Second near-infrared window (NIR-II, 1000-1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m-1 cm-1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.


Assuntos
Corantes , Níquel , Animais , Camundongos , Imagem Óptica , Linfonodos , Enxofre
3.
Adv Sci (Weinh) ; 10(24): e2301721, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37340601

RESUMO

Non-invasive detection and precise localization of deep lesions have attracted significant attention for both fundamental and clinical studies. Optical modality techniques are promising with high sensitivity and molecular specificity, but are limited by shallow tissue penetration and the failure to accurately determine lesion depth. Here the authors report in vivo ratiometric surface-enhanced transmission Raman spectroscopy (SETRS) for non-invasive localization and perioperative surgery navigation of deep sentinel lymph nodes in live rats. The SETRS system uses ultrabright surface-enhanced Raman spectroscopy (SERS) nanoparticles with a low detection limit of 10 pM and a home-built photosafe transmission Raman spectroscopy setup. The ratiometric SETRS strategy is proposed based on the ratio of multiple Raman spectral peaks for obtaining lesion depth. Via this strategy, the depth of the phantom lesions in ex vivo rat tissues is precisely determined with a mean-absolute-percentage-error of 11.8%, and the accurate localization of a 6-mm-deep rat popliteal lymph node is achieved. The feasibility of ratiometric SETRS allows the successful perioperative navigation of in vivo lymph node biopsy surgery in live rats under clinically safe laser irradiance. This study represents a significant step toward the clinical translation of TRS techniques, providing new insights for the design and implementation of in vivo SERS applications.


Assuntos
Nanopartículas , Linfonodo Sentinela , Ratos , Animais , Análise Espectral Raman/métodos , Nanopartículas/química , Imagens de Fantasmas , Lasers
4.
Adv Sci (Weinh) ; 9(2): e2102405, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741446

RESUMO

The accurate positioning of sentinel lymph node (SLN) by tracers during surgery is an important prerequisite for SLN biopsy. A major problem of traditional tracers in SLN biopsy is the short surgery window due to the fast diffusion of tracers through the lymphatics, resulting in a misjudgment between SLN and second echelon lymph node (2nd LN). Here, a nontoxic Raman nanoparticle tracer, termed gap-enhanced Raman tags (GERTs), for the accurate intraoperative positioning of SLNs with a sufficient surgical time window is designed. In white New Zealand rabbit models, GERTs enable precise identification of SLNs within 10 min, as well as provide the surgeon with a more than 4 h time window to differentiate SLN and 2nd LN. In addition, the ultrahigh sensitivity of GERTs (detection limit is 0.5 × 10-12 m) allows detection of labeled SLNs before surgery, thereby providing preoperative positioning information for minimally invasive surgery. Comprehensive biosafety evaluations carried out in the context of the Food and Drug Administration and International Standard Organization demonstrate no significant toxicity of GERTs, which supports a promising clinical translation opportunity of GERTs for precise SLN identification in breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Monitorização Intraoperatória/métodos , Biópsia de Linfonodo Sentinela/métodos , Linfonodo Sentinela/diagnóstico por imagem , Análise Espectral Raman/métodos , Animais , Modelos Animais de Doenças , Feminino , Nanopartículas , Coelhos
5.
Biomaterials ; 276: 121070, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418817

RESUMO

Sentinel lymph node (SLN) imaging and biopsy has been advocated as an important technique to evaluate the metastatic status of regional lymph nodes and determine subsequent surgical procedure for many cancers, yet there is no reliable means to provide accurate and rapid diagnosis of metastatic SLN during surgery. Here we develop a new approach, named "Ratiometric Raman dual-nanotag strategy", that using folic acid functionalized targeted and nontargeted gap-enhanced Raman tags (FA-GERTs and Nt-GERTs) to detect metastatic SLN based on Raman imaging combined with classical least square data processing methods. By using this strategy, with built-in self-calibration for signal correction, rather than absolute intensity-dependent signal readout, we realize the visualization and prompt intraoperative diagnosis of metastatic SLN with a high accuracy of 87.5 % when the cut-off value of ratio (FA-GERTs/Nt-GERTs) set at 1.255. This approach may outperform the existing histopathological assessment in diagnosing SLN metastasis and is promising for guiding surgical procedure in the future.


Assuntos
Linfonodo Sentinela , Diagnóstico por Imagem , Humanos , Linfonodos , Metástase Linfática , Biópsia de Linfonodo Sentinela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA