Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transl Res ; 271: 26-39, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38734063

RESUMO

Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to ß-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.


Assuntos
Doxorrubicina , Fibroínas , Metabolismo dos Lipídeos , PPAR alfa , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , PPAR alfa/metabolismo , PPAR alfa/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Fibroínas/química , Fibroínas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Peptídeos/farmacologia , Peptídeos/química , Ratos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ratos Sprague-Dawley
2.
Theranostics ; 11(18): 8797-8812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522212

RESUMO

Rationale: Neprilysin (NEP) is a major endogenous catabolic enzyme of amyloid ß (Aß). Previous studies have suggested that increasing NEP expression in animal models of Alzheimer's disease had an ameliorative effect. However, the underlying signaling pathway that regulates NEP expression remains unclear. The aryl hydrocarbon receptor (AhR) is a ligand-activated cytoplasmic receptor and transcription factor. Recent studies have shown that AhR plays essential roles in the central nervous system (CNS), but its physiological and pathological roles in regulating NEP are not entirely known. Methods: Western blotting, immunofluorescence, quantitative RT-PCR and enzyme activity assay were used to verify the effects of AhR agonists on NEP in a cell model (N2a) and a mouse model (APP/PS1). Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were conducted to investigate the roles of AhR in regulating NEP transcription. Object recognition test and the Morris water maze task were performed to assess the cognitive capacity of the mice. Results: Activating AhR by the endogenous ligand L-Kynurenine (L-KN) or FICZ, or by the exogenous ligand diosmin or indole-3-carbinol (I3C) significantly increases NEP expression and enzyme activity in N2a cells and APP/PS1 mice. We also found that AhR is a direct transcription factor of NEP. Diosmin treatment effectively ameliorated the cognitive disorder and memory deficit of APP/PS1 transgenic mice. By knocking down AhR or using a small molecular inhibitor targeting AhR or NEP, we found that diosmin enhanced Aß degradation through activated AhR and increased NEP expression. Conclusions: These results indicate a novel pathway for regulating NEP expression in neurons and that AhR may be a potential therapeutic target for the treatment of Alzheimer's disease.


Assuntos
Disfunção Cognitiva/metabolismo , Neprilisina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/patologia , China , Cognição/fisiologia , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Hipocampo/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Transgênicos , Neprilisina/efeitos dos fármacos , Neprilisina/genética , Neurônios/metabolismo , Presenilina-1/genética , Receptores de Hidrocarboneto Arílico/fisiologia
3.
Theriogenology ; 148: 68-75, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32145514

RESUMO

Spermatogonial stem cells (SSCs) are defined as the tissue-specific stem cells in the testes that produce sperm and support life-long spermatogenesis. A culture microenvironment could convert mouse SSCs from unipotent to pluripotent states; however, the underlying mechanism is unclear. NANOG has been considered the decisive transcriptional factor for pluripotency transition of stem cells, but NANOG is not expressed in SSCs. Here, we investigated whether NANOG overexpression could result in SSCs being converted into a pluripotent state. We found that rare NANOG-positive cells could be detected in spermatogonia, pachytene spermatocytes, and even round spermatids in mouse testes, and that the induction of NANOG could promote the proliferation of cultured SSCs in vitro and partially compensate for the role of the growth factor GDNF. In vivo allogeneic transplantation of NANOG-overexpressing germ cells did not yield any teratoma-like tissues, but regenerated normal colonies of spermatogenesis in the testes of recipient mice. Collectively, our data showed that overexpression of the pluripotency factor NANOG along did not dedifferentiate testis germline stem cells into a pluripotent state, suggesting that other genetic or epigenetic factors are involved in SSC reprogramming.


Assuntos
Desdiferenciação Celular/fisiologia , Proteína Homeobox Nanog/metabolismo , Espermatogônias/fisiologia , Células-Tronco/metabolismo , Animais , Regulação da Expressão Gênica , Masculino , Camundongos , Proteína Homeobox Nanog/genética , Reação em Cadeia da Polimerase em Tempo Real , Espermatogênese , Transplante de Células-Tronco , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA