Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 30(2): e14536, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375982

RESUMO

BACKGROUND: Depression is a prevalent psychiatric disorder with high long-term morbidities, recurrences, and mortalities. Despite extensive research efforts spanning decades, the cellular and molecular mechanisms of depression remain largely unknown. What's more, about one third of patients do not have effective anti-depressant therapies, so there is an urgent need to uncover more mechanisms to guide the development of novel therapeutic strategies. Adenosine triphosphate (ATP) plays an important role in maintaining ion gradients essential for neuronal activities, as well as in the transport and release of neurotransmitters. Additionally, ATP could also participate in signaling pathways following the activation of postsynaptic receptors. By searching the website PubMed for articles about "ATP and depression" especially focusing on the role of extracellular ATP (eATP) in depression in the last 5 years, we found that numerous studies have implied that the insufficient ATP release from astrocytes could lead to depression and exogenous supply of eATP or endogenously stimulating the release of ATP from astrocytes could alleviate depression, highlighting the potential therapeutic role of eATP in alleviating depression. AIM: Currently, there are few reviews discussing the relationship between eATP and depression. Therefore, the aim of our review is to conclude the role of eATP in depression, especially focusing on the evidence and mechanisms of eATP in alleviating depression. CONCLUSION: We will provide insights into the prospects of leveraging eATP as a novel avenue for the treatment of depression.


Assuntos
Trifosfato de Adenosina , Depressão , Humanos , Trifosfato de Adenosina/metabolismo , Depressão/tratamento farmacológico , Astrócitos/metabolismo
2.
Front Immunol ; 14: 1243149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705982

RESUMO

Pain imposes a significant urden on patients, affecting them physically, psychologically, and economically. Despite numerous studies on the pathogenesis of pain, its clinical management remains suboptimal, leading to the under-treatment of many pain patients. Recently, research on the role of macrophages in pain processes has been increasing, offering potential for novel therapeutic approaches. Macrophages, being indispensable immune cells in the innate immune system, exhibit remarkable diversity and plasticity. However, the majority of research has primarily focused on the contributions of M1 macrophages in promoting pain. During the late stage of tissue damage or inflammatory invasion, M1 macrophages typically transition into M2 macrophages. In recent years, growing evidence has highlighted the role of M2 macrophages in pain relief. In this review, we summarize the mechanisms involved in M2 macrophage polarization and discuss their emerging roles in pain relief. Notably, M2 macrophages appear to be key players in multiple endogenous pathways that promote pain relief. We further analyze potential pathways through which M2 macrophages may alleviate pain.


Assuntos
Manejo da Dor , Dor , Humanos , Macrófagos , Ativação de Macrófagos
3.
Inflamm Res ; 72(8): 1551-1565, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433890

RESUMO

BACKGROUND: The purpose of this study was to study the effect of STING-IFN-I pathway on incision induced postoperative pain in rats and its possible mechanisms. METHODS: The pain thresholds were evaluated by measuring the mechanical withdrawal threshold and the thermal withdrawal latency. The satellite glial cell and macrophage of DRG were analyzed. The expression of STING, IFN-a, P-P65, iNOS, TNF-α, IL-1ß and IL-6 in DRG was evaluated. RESULTS: The activation of STING-IFN-I pathway can reduce the mechanical hyperalgesia, thermal hyperalgesia, down-regulate the expression of P-P65, iNOS, TNF-α, IL-1ß and IL-6, and inhibit the activation of satellite glial cell and macrophage in DRG. CONCLUSIONS: The activation of STING-IFN-I pathway can alleviate incision induced acute postoperative pain by inhibiting the activation of satellite glial cell and macrophage, which reducing the corresponding neuroinflammation in DRG.


Assuntos
Gânglios Espinais , Fator de Necrose Tumoral alfa , Ratos , Animais , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Hiperalgesia/metabolismo , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/metabolismo
4.
Mol Neurobiol ; 60(5): 2922-2936, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36753045

RESUMO

Inflammatory pain is difficult to treat clinically, but electroacupuncture (EA) has been demonstrated to be effective in alleviating inflammatory pain. Programmed cell death ligand-1 (PD-L1) and its downstream signal, Src homology region two domain-containing phosphatase-1 (SHP-1) have a critical role in relieving inflammatory pain. However, whether the PD-L1/PD-1-SHP-1 pathway mediates the analgesic and anti-inflammatory effects of EA in inflammatory pain remains unclear. Here, we observed that EA reversed the complete Freund's adjuvant (CFA)-induced hyperalgesia. EA reduced the expression of IL-6, iNOS, and NF-κB pathway in dorsal root ganglia (DRG) on day 7 after CFA injection but had no effect on the expression of IL-6, iNOS, and NF-κB PP65 on day 21 after CFA injection. Moreover, EA upregulated the protein levels of the PD-L1/PD-1-SHP-1 pathway on day 7 and day 21 after CFA injection. Furthermore, EA upregulated PD-L1 expression in calcitonin gene-related peptide (CGRP)+ but not in isohaemagglutinin B4 (IB4)+ and NF200+ neurons on day 7 and day 21 after CFA injection. Intrathecal injection of the PD-L1/PD-1 inhibitor BMS-1 (50 or 100 µg) blocked the EA-induced analgesic effect, significantly increased IL-6 and iNOS levels, and reduced the levels of PD-L1/PD-1-SHP-1. BMS-1 (50 or 100 µg) significantly reduced the expression of PD-L1 in IB4+, CGRP+, and NF200+ neurons. Our results show that EA's anti-inflammatory and analgesic effects are associated with activating the PD-L1/PD-1-SHP-1 pathway and suppressing its regulated neuroinflammation. This study provides a new potential therapeutic target for treating inflammatory pain.


Assuntos
Antígeno B7-H1 , Eletroacupuntura , Ratos , Animais , Adjuvante de Freund/efeitos adversos , Receptor de Morte Celular Programada 1 , NF-kappa B , Peptídeo Relacionado com Gene de Calcitonina , Interleucina-6 , Ratos Sprague-Dawley , Dor/metabolismo , Hiperalgesia/complicações , Hiperalgesia/terapia , Hiperalgesia/induzido quimicamente , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA