Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Urol Int ; 107(8): 755-771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37454653

RESUMO

BACKGROUND: The aim of the study was to identify the cooperation of authors, countries, institutions and explore the hot spots regarding research of tyrosine kinase inhibitors (TKIs) for renal cell carcinoma (RCC) treatment in the past 22 years. SUMMARY: Relevant original and review articles were obtained from the Web of Science Core Collection from 2000 to 2022. CiteSpace software was used to perform the visualization of scientific productivity and emerging trends. Network maps were generated to evaluate the collaborations between different authors, countries, institutions, and keywords. KEY MESSAGES: A total of 4,951 articles related to TKI for RCC treatment were identified. We observed a gradual increase in the number of publications from 2000 to 2022. The USA dominated the field in all countries, and Mem Sloan Kettering Cancer Centre (USA) had more extensive cooperating relationships with other institutions. Motzer RJ and Escudier B were two of the authority scholars in this specific field with the most publications and co-citations. Journal of Clinical Oncology had the most citations of all the journals. A total of 10 major clusters were explored based on the reference co-citation analysis. From 2000 to 2022, the research hot spots have undergone two dramatic shifts during 2006 and 2019, respectively, relevant topics were TKI and TKI combined with immune checkpoint inhibitors (CPIs). At present, the research hot spots focus on CPI and targeted therapies. Bibliometric analysis is allowing researchers to recognize the current research status by providing a comprehensive overview of the development of scientific literature related to TKI for RCC treatment, and information for further research be demonstrated as well.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Bibliometria , Oncologia , Neoplasias Renais/tratamento farmacológico
2.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190284

RESUMO

Metastatic prostate cancer (PCa) remains incurable and causes considerably diminished overall survival. Despite significant progress in pharmacotherapy, the disease prognosis remains unchanged. Immune checkpoint inhibitors (ICIs) have demonstrated effectiveness in treating various advanced malignancies, but their efficacy in metastatic PCa is relatively limited. Previous studies have confirmed the immunosuppressive role of tumor-infiltrating B cells (TIL-Bs) in the PCa microenvironment, which accounts for their poor immunogenic potency. In this study, we demonstrated that an oral kinase agent, ibrutinib, strongly potentiated anti-PD-1 checkpoint blockade efficacy and successfully controlled tumor growth in a murine orthotopic PCa model constructed using a metastatic and hormone-independent cell line (RM-1). We identified close relationships between TIL-Bs, Bruton's tyrosine kinase (BTK), and immunosuppressive molecules by bioinformatics and histological analysis. An in vitro study showed that a low dose of ibrutinib significantly inhibited B cell proliferation and activation as well as IL-10 production through the BTK pathway. Moreover, ibrutinib-treated B cells promoted CD8+ T cell proliferation and inhibitory receptor (IR) expression. However, the same dose of ibrutinib was insufficient to induce apoptosis in cancer cells. An in vivo study showed that ibrutinib monotherapy failed to achieve tumor regression in murine models but decreased B cell infiltration and inhibited activation and IL-10 production. More importantly, CD8+ T cell infiltration increased with high IR expression. Ibrutinib synergized with anti-PD-1 checkpoint blockade enormously improved antitumor immunity, thereby reducing tumor volume in the same scenario. These data set the scene for the clinical development of ibrutinib as an immunogenic trigger to potentiate anti-PD-1 checkpoint blockade for metastatic PCa immunotherapy.

3.
Front Immunol ; 12: 778359, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777394

RESUMO

Acute antibody-mediated rejection (AAMR) is an important cause of cardiac allograft dysfunction, and more effective strategies need to be explored to improve allograft prognosis. Interleukin (IL)-6/IL-6R signaling plays a key role in the activation of immune cells including B cells, T cells and macrophages, which participate in the progression of AAMR. In this study, we investigated the effect of IL-6/IL-6R signaling blockade on the prevention of AAMR in a mouse model. We established a mouse model of AAMR for cardiac transplantation via presensitization of skin grafts and addition of cyclosporin A, and sequentially analyzed its features. Tocilizumab, anti-IL-6R antibody, and recipient IL-6 knockout were used to block IL-6/IL-6R signaling. We demonstrated that blockade of IL-6/IL-6R signaling significantly attenuated allograft injury and improved survival. Further mechanistic research revealed that signaling blockade decreased B cells in circulation, spleens, and allografts, thus inhibiting donor-specific antibody production and complement activation. Moreover, macrophage, T cell, and pro-inflammatory cytokine infiltration in allografts was also reduced. Collectively, we provided a highly practical mouse model of AAMR and demonstrated that blockade of IL-6/IL-6R signaling markedly alleviated AAMR, which is expected to provide a superior option for the treatment of AAMR in clinic.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Linfócitos B/efeitos dos fármacos , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração/efeitos adversos , Imunossupressores/farmacologia , Interleucina-6/metabolismo , Isoanticorpos/imunologia , Receptores de Interleucina-6/antagonistas & inibidores , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/metabolismo , Rejeição de Enxerto/patologia , Mediadores da Inflamação/metabolismo , Interleucina-6/genética , Isoanticorpos/sangue , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/imunologia , Miocárdio/metabolismo , Miocárdio/patologia , Receptores de Interleucina-6/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA