Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0250122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36377953

RESUMO

Escherichia coli serine hydroxymethyltransferase (GlyA) converts serine to glycine, and glyA mutants are auxotrophic for glycine. CycA is a transporter that mediates glycine uptake. Deleting glyA in E. coli strain W3110 led to activation of CysB, which was related to novobiocin (NOV) susceptibility. Moreover, deleting glyA resulted in increased sensitivity to NOV, and this could be reversed by high concentrations of glycine. Reverse mutants of ΔglyA were selected and one of them had a mutation in yrdC, the gene encoding threonylcarbamoyl-AMP synthase. Subsequent proteome analysis showed that deleting glyA led to increased expression of TcyP and TdcB, making this bacterium dependent on CycA for glycine assimilation. Furthermore, deleting cycA in a ΔglyA background caused a severe growth defect on Luria-Bertani medium, which could be complemented by high concentrations of exogenous glycine. Mutation of yrdC led to decreased expression of TdcB but increased expression of ThrA/B/C and LtaE, which favored the conversion of threonine to glycine and thus avoided the dependence on CycA. Correspondingly, deleting of tcyP, tdcB, or gshA could reverse the NOV-sensitive phenotype of ΔglyA mutants. Overexpression of cycA resulted in increased sensitivity to NOV, whereas deleting this gene caused NOV resistance. Moreover, overexpression of cycA led to increased accumulation of NOV upon drug treatment. Therefore, inactivation of glyA in E. coli led to CycA-dependent glycine assimilation, which enhanced the accumulation of NOV and then made the bacterium more sensitive to this drug. These findings broaden our understanding of glycine metabolism and mechanisms of NOV susceptibility. IMPORTANCE Novobiocin (NOV) has been used in clinical practice as an ATPase inhibitor for decades. However, because it has been withdrawn from the market, pharmaceutical companies are searching for other ATPase inhibitors. Thus, probing the mechanisms of susceptibility to NOV will be beneficial to those efforts. In this study, we showed that inactivation of glyA in E. coli led to CycA-dependent glycine assimilation, which accompanied the accumulation of NOV and thereby increased the sensitivity to this drug. To date, this is the first report demonstrating the linkage between glycine assimilation and NOV susceptibility, and it is also the first report showing that YrdC is able to modulate the metabolic flux of threonine.


Assuntos
Sistemas de Transporte de Aminoácidos , Proteínas de Escherichia coli , Glicina , Adenosina Trifosfatases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina/metabolismo , Novobiocina/farmacologia , Treonina/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
2.
Proteomics ; 18(23): e1800265, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30281201

RESUMO

Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.


Assuntos
Mycobacterium tuberculosis/metabolismo , Proteoma/análise , Proteínas de Bactérias/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
3.
EBioMedicine ; 30: 225-236, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29622495

RESUMO

Owing to the spread of multidrug resistance (MDR) and extensive drug resistance (XDR), there is a pressing need to identify potential targets for the development of more-effective anti-M. tuberculosis (Mtb) drugs. PafA, as the sole Prokaryotic Ubiquitin-like Protein ligase in the Pup-proteasome System (PPS) of Mtb, is an attractive drug target. Here, we show that the activity of purified Mtb PafA is significantly inhibited upon the association of AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride) to PafA residue Serine 119 (S119). Mutation of S119 to amino acids that resemble AEBSF has similar inhibitory effects on the activity of purified Mtb PafA. Structural analysis reveals that although S119 is distant from the PafA catalytic site, it is located at a critical position in the groove where PafA binds the C-terminal region of Pup. Phenotypic studies demonstrate that S119 plays critical roles in the function of Mtb PafA when tested in M. smegmatis. Our study suggests that targeting S119 is a promising direction for developing an inhibitor of M. tuberculosis PafA.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Serina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mutação/genética , Nitrogênio/farmacologia , Relação Estrutura-Atividade , Sulfonas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/isolamento & purificação
4.
Mol Cell Proteomics ; 16(12): 2243-2253, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018126

RESUMO

Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Proteômica/métodos , Proteínas Ribossômicas/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Grupo dos Citocromos b/química , Ferritinas/química , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Proteínas Ribossômicas/química , Células THP-1
5.
Biosens Bioelectron ; 87: 858-864, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27657848

RESUMO

Core-shell structural adenosine-imprinted microspheres were prepared via a two-step procedure. Polystyrene core particles (CP) were firstly prepared via a reversible addition-fragmentation chain transfer (RAFT) polymerization leaving the iniferter on the surface of the cores, then a molecularly imprinted polymer (MIP) shell was synthesized on the surface of the cores by using acrylamide (AAm) as the functional monomer and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. The formation and growth of the MIP layer were seen dependent on the initiator (AIBN), AAm and the polymerization time used within the polymerization. SEM/TEM images showed that the dimensions of the cores and shells were 2µM and 44nm, respectively. The MIP microspheres exhibited a fast rebinding rate within 2h and a maximum adsorption capacity of 177µg per gram for adenosine. The adsorption fitted a Langmuir-Freundlich (LF) isotherm model with a KLF value of 41mL/µg and a qm value of 177µg/g for the MIP microspheres. The values were larger than those for a non-molecularly imprinted polymer (NIP) particles (5mL/µg and 88µg/g) indicating a better adsorption ability towards adenosine. The MIP microspheres showed a good selectivity for adenosine with a higher adsorption (683nmol/g) for adenosine than that (91nmol/g, 24nmol/g and 54nmol/g) for guanosine, cytidine and uridine respectively. Further experiment proved that the adenosine-imprinted polymer microspheres also had a good selectivity for ADP-ribosylated proteins that the MIP could extract the ADP-ribosylated proteins from the cell extract samples.


Assuntos
Difosfato de Adenosina/análise , Adenosina/análise , Impressão Molecular/métodos , Polímeros/química , Proteínas/química , Adenosina/isolamento & purificação , Difosfato de Adenosina/isolamento & purificação , Animais , Técnicas Biossensoriais , Bovinos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Microesferas , Polimerização , Poliestirenos/química , Soroalbumina Bovina/química
6.
Int J Nanomedicine ; 8: 2119-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776332

RESUMO

Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs) are still unknown. In this article, it was found that quantum dots (QDs) can induce simian virus 40 (SV40) capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1) can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD=2.19E-10 M), which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles.


Assuntos
Proteínas do Capsídeo , Capsídeo , Nanopartículas , Pontos Quânticos , Soluções Tampão , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Vírus 40 dos Símios
7.
Small ; 6(20): 2301-8, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20842665

RESUMO

Viral capsid-nanoparticle hybrid structures offer new opportunities for nanobiotechnology. We previously generated virus-based nanoparticles (VNPs) of simian virus 40 (SV40) containing quantum dots (QDs) for cellular imaging. However, as an interesting issue of nano-bio interfaces, the mechanism of nanoparticle (NP) encapsulation by viral coat proteins remains unclear. Here, four kinds of QDs with the same core/shell but different surface coatings are tested for encapsulation. All the QDs can be encapsulated efficiently and there is no correlation between the encapsulation efficiency and the surface charge of the QDs. All the SV40 VNPs encapsulating differently modified QDs show similar structures, fluorescence properties, and activity in entering living cells. These results demonstrate the flexibility of SV40 major capsid protein VP1 in NP encapsulation and provide new clues to the mechanism of NP packaging by viral shells.


Assuntos
Proteínas do Capsídeo/química , Nanopartículas/química , Nanotecnologia/métodos , Pontos Quânticos , Vírus 40 dos Símios/metabolismo
8.
Mutat Res ; 637(1-2): 101-10, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17765269

RESUMO

It has been hypothesized that DNA mismatch repair (MMR) is coupled with DNA replication; however, the involvement of DNA polymerase III subunits in bacterial DNA MMR has not been clearly elucidated. In an effort to better understand the relationship between these 2 systems, the potential interactions between the Escherichia coli MMR protein and the clamp loader subunits of E. coli DNA polymerase III were analyzed by far western blotting and then confirmed and characterized by surface plasmon resonance (SPR) imaging. The results showed that the MMR key protein MutL could directly interact with both the individual subunits delta, delta', and gamma and the complex of these subunits (clamp loader). Kinetic parameters revealed that the interactions are strong and stable, suggesting that MutL might be involved in the recruitment of the clamp loader during the resynthesis step in MMR. The interactions between MutL, the delta and gamma subunits, and the clamp loader were observed to be modulated by ATP. Deletion analysis demonstrated that both the N-terminal residues (1-293) and C-terminal residues (556-613) of MutL are required for interacting with the subunits delta and delta'. Based on these findings and the available information, the network of interactions between the MMR components and the DNA polymerase III subunits was established; this network provides strong evidence to support the notion that DNA replication and MMR are highly associated with each other.


Assuntos
Adenosina Trifosfatases/metabolismo , Reparo de Erro de Pareamento de DNA , DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/farmacologia , Western Blotting , DNA Bacteriano , Proteínas de Escherichia coli/química , Proteínas MutL , Subunidades Proteicas/metabolismo , Ressonância de Plasmônio de Superfície
9.
Nucleic Acids Res ; 34(19): 5650-9, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17038336

RESUMO

As only the type II topoisomerase is capable of introducing negative supercoiling, DNA gyrase is involved in crucial cellular processes. Although the other domains of DNA gyrase are better understood, the mechanism of DNA binding by the C-terminal domain of the DNA gyrase A subunit (GyrA-CTD) is less clear. Here, we investigated the DNA-binding sites in the GyrA-CTD of Mycobacterium tuberculosis gyrase through site-directed mutagenesis. The results show that Y577, R691 and R745 are among the key DNA-binding residues in M.tuberculosis GyrA-CTD, and that the third blade of the GyrA-CTD is the main DNA-binding region in M.tuberculosis DNA gyrase. The substitutions of Y577A, D669A, R691A, R745A and G729W led to the loss of supercoiling and relaxation activities, although they had a little effect on the drug-dependent DNA cleavage and decatenation activities, and had no effect on the ATPase activity. Taken together, these results showed that the GyrA-CTD is essential to DNA gyrase of M.tuberculosis, and promote the idea that the M.tuberculosis GyrA-CTD is a new potential target for drug design. It is the first time that the DNA-binding sites in GyrA-CTD have been identified.


Assuntos
DNA Girase/química , Proteínas de Ligação a DNA/química , Mycobacterium tuberculosis/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , DNA Girase/genética , DNA Girase/metabolismo , DNA Catenado/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos
10.
Anal Chem ; 76(3): 632-8, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14750857

RESUMO

Homogeneity is proposed for evaluation of the quality of analytical biodevices, such as biosensors and biochips. As a demonstration, glucose oxidase (GOx) was modified at its C-terminal with a linker peptide with a cysteine residue at the end. The fusion structure (GOx-linker-cysteine) enables the enzyme to immobilize on gold surfaces with a Cys-S-Au bond or to immobilize on a silanized glass surface via disulfide chemistry. With this fusion structure, the enzyme can be anchored onto the substrate with well-controlled orientation, thus forming a homogeneous biological layer on biodevices. The linker peptide between GOx and the cysteine acts as a spacer to reduce the steric hindrance caused by the bulky body of the enzyme. Biochemistry experiments showed that this genetically modified glucose oxidase (shortened to GOxm) retained most of its catalytic characteristics, with K(m) and K(cat) similar to those of the wild-type GOx. Electrochemistry experiments showed that GOxm-modified electrode gave higher and more stable current responses than the electrode modified with GOx which has no free -SH on its surface. The coefficients of variation (used for evaluation of the interchangeability of the enzyme device from the same batch preparation) were 9.5% for the GOxm gold electrode and 20.0% for the GOx gold electrode and the GOxm oxygen electrode. The relative errors (used for evaluation of the precision of the individual enzyme device) were 2.9% for the GOxm gold electrode, 12.0% for the GOx gold electrode, and 11.2% for the GOxm oxygen electrode. Atomic force microscopy images revealed that GOxm formed a self-assembled monolayer in a hexagonal-like lattice packing arrangement on the gold surface, while GOx formed multilayer assembling or aggregated particles. The homogeneity of the protein chips, the GOxm array that was prepared through -S-S- formation, and the GOx array that was prepared through nonspecific adsorption was evaluated. The coefficients of variation, calculated with the signal level of all dots, were 5.4% for the GOxm array and 81.8% for the GOx array. All experimental results pointed to the fact that the homogeneity of the analytical biodevices could be considerably improved by using the proposed method.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase/química , Aspergillus niger/enzimologia , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/normas , Cisteína/química , Eletroquímica , Eletrodos , Enzimas Imobilizadas , Regulação Enzimológica da Expressão Gênica , Vidro/química , Glucose/análise , Glucose Oxidase/genética , Ouro/química , Cinética , Microscopia de Força Atômica , Oxigênio/química , Pichia/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
11.
Anal Chem ; 75(16): 4113-9, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-14632124

RESUMO

This paper describes a new protein chip method for detection of single-base mismatches and unpaired bases of DNA, using a genetic fusion molecular system Trx-His6-Linker peptide-Strep-tagII-Linker peptide-MutS (THLSLM). The THLSLM coding sequence was constructed by attaching Strep-tag II and mutS gene to pET32a (+) sequentially with insertion of a linker peptide coding sequence before and behind Strep-tagII gene, respectively. THLSLM was expressed in E. coli AD494 (DE3) and purified using Ni(2+)-chelation affinity resin. THLSLM retained both mismatch recognition activity and streptavidin binding affinity. THLSLM was then immobilized on the chip matrix coated with streptavidin through the Strep-tag II-streptavidin binding reaction. The resulting protein chip was used to detect the mismatched and unpaired mutations in the synthesized oligonucleotides, as well as a single-base mutation in rpoB gene from Mycobacterium tuberculosis, with high specificity. The method could potentially serve as a platform to develop the high-throughput technology for screening and analysis of genetic mutations.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Análise Mutacional de DNA/métodos , Proteínas de Ligação a DNA/genética , Mutação Puntual/genética , Análise Serial de Proteínas/métodos , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Pareamento Incorreto de Bases , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Tolerância a Medicamentos , Expressão Gênica , Proteína MutS de Ligação de DNA com Erro de Pareamento , Mycobacterium tuberculosis/genética , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Análise Serial de Proteínas/instrumentação , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Rifampina/farmacologia
12.
Sheng Wu Gong Cheng Xue Bao ; 18(5): 536-40, 2002 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-12561194

RESUMO

DNA mismatch repair gene mutS (2.56 kb) was PCR modified and cloned into a secretive prokaryotic expression vector pET32a (+) which carries a N-terminal His.tag + and thioredoxin sequence. MutS protein was expressed with high level after IPTG induction using the strain E. coli AD494(DE3). SDS-PAGE revealed that the expected protein with a molecular weight of 108 kD which is about 35% of the total bacterial proteins is almost soluble. The expected protein was purified directly by immobilized metal (Ni2+) chelation affinity chromatography and the purity is over 90%. MutS protein activity verified using mismatch DNA showed that the expression product can recognize and bind to base-pair mismatch specifically.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Bactérias , Pareamento Incorreto de Bases , Reparo do DNA , Proteínas de Ligação a DNA , Proteínas de Escherichia coli/genética , Proteínas Recombinantes/biossíntese , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/isolamento & purificação , Cromatografia de Afinidade , DNA/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/isolamento & purificação , Magnésio/farmacologia , Peso Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA