Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 124: 109509, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37907170

RESUMO

Maternal glucose intolerance in late pregnancy can easily impair pregnancy outcomes and placental development. The impairment of placental angiogenesis is closely related to the occurrence of glucose intolerance during pregnancy, but the mechanism remains largely unknown. In this study, the pregnant mouse model of maternal high-fat diet and endothelial injury model of porcine vascular endothelial cells (PVECs) was used to investigate the effect of glucose intolerance on pregnancy outcomes and placental development. Feeding pregnant mice, a high-fat diet was shown to induce glucose intolerance in late pregnancy, and significantly increase the incidence of resorbed fetuses. Moreover, a decrease was observed in the proportion of blood sinusoids area and the expression level of CD31 in placenta, indicating that placental vascular development was impaired by high-fat diet. Considering that hyperglycemia is an important symptom of glucose intolerance, we exposed PVECs to high glucose (50 mM), which verified the negative effects of high glucose on endothelial function. Bioinformatics analysis further emphasized that high glucose exposure could significantly affect the angiogenesis-related functions of PVECs and predicted that Krüppel-like factor 4 (KLF4) may be a key mediator of these functional changes. The subsequent regulation of KLF4 expression confirmed that the inhibition of KLF4 expression was an important reason why high glucose impaired the endothelial function and angiogenesis of PVECs. These results indicate that high-fat diet can aggravate maternal glucose intolerance and damage pregnancy outcome and placental angiogenesis, and that regulating the expression of KLF4 may be a potential therapeutic strategy for maintaining normal placental angiogenesis.


Assuntos
Intolerância à Glucose , Placenta , Animais , Feminino , Camundongos , Gravidez , Angiogênese , Dieta Hiperlipídica/efeitos adversos , Regulação para Baixo , Células Endoteliais/metabolismo , Glucose/metabolismo , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Fator 4 Semelhante a Kruppel , Placenta/metabolismo , Placentação , Suínos
2.
J Agric Food Chem ; 71(48): 18696-18708, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38012857

RESUMO

Deoxynivalenol (DON), one of the most polluted mycotoxins in the environment and food, has been proven to have strong embryonic and reproductive toxicities. However, the effects of DON on placental impairment and effective interventions are still unclear. This study investigated the effect of ß-carotene on placental functional impairment and its underlying molecular mechanism under DON exposure. Adverse pregnancy outcomes were caused by intraperitoneal injection of DON from 13.5 to 15.5 days of gestation in mice, resulting in higher enrichment of DON in placenta than in other tissue samples. Interestingly, 0.1% ß-carotene dietary supplementation could significantly alleviate DON-induced pregnancy outcomes. Additionally, in vivo and in vitro placental barrier models demonstrated the association of DON-induced placental function impairment with placental permeability barrier disruption, angiogenesis impairment, and oxidative stress induction. Moreover, ß-carotene regulated DON-induced placental toxicity by activating the expressions of claudin 1, zonula occludens-1, and vascular endothelial growth factor-A through retinoic acid-peroxisome proliferator-activated receptor α signaling.


Assuntos
PPAR alfa , Placenta , Gravidez , Feminino , Animais , Camundongos , Placenta/metabolismo , PPAR alfa/metabolismo , beta Caroteno/farmacologia , beta Caroteno/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Tretinoína/metabolismo
4.
Sci Adv ; 9(44): eadi7337, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922350

RESUMO

Inflammation-associated insulin resistance is a key trigger of gestational diabetes mellitus (GDM), but the underlying mechanisms and effective interventions remain unclear. Here, we report the association of placental inflammation (tumor necrosis factor-α) and abnormal maternal glucose metabolism in patients with GDM, and a high fermentable dietary fiber (HFDF; konjac) could reduce GDM development through gut flora-short-chain fatty acid-placental inflammation axis in GDM mouse model. Mechanistically, HFDF increases abundances of Lachnospiraceae and butyrate, reduces placental-derived inflammation by enhancing gut barrier and inhibiting the transfer of bacterial-derived lipopolysaccharide, and ultimately resists high-fat diet-induced insulin resistance. Lachnospiraceae and butyrate have similar anti-GDM and anti-placental inflammation effects, and they can ameliorate placental function and pregnancy outcome effects probably by dampening placental immune dysfunction. These findings demonstrate the involvement of important placental inflammation-related mechanisms in the progression of GDM and the great potential of HFDFs to reduce susceptibility to GDM through gut-flora-placenta axis.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Animais , Camundongos , Gravidez , Humanos , Feminino , Diabetes Gestacional/metabolismo , Diabetes Gestacional/patologia , Placenta/metabolismo , Butiratos/farmacologia , Butiratos/metabolismo , Inflamação/metabolismo
5.
Plant Physiol Biochem ; 203: 108076, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37832366

RESUMO

The MADS-box transcription factor APETELA1 (AP1) is crucially important for reproductive developmental processes. The function of AP1 and the classic LFY-AP1 interaction in woody plants are not widely known. Here, the OfAP1-a gene from the continuously flowering plant Osmanthus fragrans 'Sijigui' was characterized, and its roles in regulating flowering time, petal number robustness and floral organ identity were determined using overexpression in Arabidopsis thaliana and Nicotiana tabacum. The expression of OfAP1-a was significantly induced by low ambient temperature and was upregulated with the floral transition process. Ectopic expression OfAP1-a revealed its classic function in flowering and flower ABC models. The expression of OfAP1-a is inhibited by LEAFY (OfLFY) through direct promoter binding, as confirmed by yeast one-hybrid and dual luciferase assays. Arabidopsis plants overexpressing OfAP1-a exhibited accelerated flowering and altered floral organ identities. Moreover, OfAP1-a-overexpressing plants displayed variable petal numbers. Likewise, the overexpression of OfLFY in Arabidopsis and Nicotiana altered petal number robustness and inflorescence architecture, partially by regulating native AP1 in transformed plants. Furthermore, we performed RNA-seq analysis of transgenic Nicotiana plants. DEGs were identified by transcriptome analysis, and we found that the expression of several floral homeotic genes was altered in both OfAP1-a and OfLFY-overexpressing transgenic lines. Our results suggest that OfAP1-a may play important roles during floral transition and development in response to ambient temperature. OfAP1-a functions as a petal number modulator and may directly activate a subset of flowers to regulate floral organ formation. OfAP1-a and OfLFY mutually regulate the expression of each other and coregulate genes that might be involved in these phenotypes related to flowering. The results provide valuable data for understanding the function of the LFY-AP1 module in the reproductive process and shaping floral structures in woody plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Temperatura , Fatores de Transcrição/genética , Proteínas de Arabidopsis/genética , Fenótipo , Flores/metabolismo , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 24(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37762256

RESUMO

This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.


Assuntos
Aminoácidos , Ácido Glutâmico , Suínos , Animais , Homeostase , Arginina , Sistemas de Transporte de Aminoácidos , Suplementos Nutricionais , Expressão Gênica
7.
J Agric Food Chem ; 71(18): 6846-6858, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37122089

RESUMO

Sows are highly sensitive to deoxynivalenol (DON) and susceptible to reproductive toxicity caused by oxidative stress, but the potential mechanisms and effective interventions remain unclear. Here, we investigated the role of two antioxidants (cysteamine and N-acetyl-cysteine) in regulating the reproductive performance, redox status, and placental barrier function of sows and their potential mechanisms under DON exposure. Maternal dietary supply of antioxidants from day 85 of gestation to parturition reduced the incidence of stillbirths and low-birth-weight piglets under DON exposure. Moreover, the alleviation of DON-induced reproductive toxicity by dietary antioxidants was associated with the alleviation of placental oxidative stress, the enhancement of the placental barrier, and the vascular function of sows. Furthermore, in vivo and in vitro vascularized placental barrier modeling further demonstrated that antioxidants could reverse both DON transport across the placenta and DON-induced increase of placental barrier permeability. The molecular mechanism of antioxidant resistance to DON toxicity may be related to the signal transducer and activator of the transcription-3-occludin/zonula occludens-1 signaling pathway. Collectively, these results demonstrate the potential of antioxidants to protect the mother from DON-induced reproductive toxicity by alleviating placental oxidative stress and enhancing the placental barrier.


Assuntos
Cisteamina , Placenta , Gravidez , Animais , Feminino , Suínos , Placenta/metabolismo , Cisteamina/metabolismo , Cisteamina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Estresse Oxidativo
8.
Arterioscler Thromb Vasc Biol ; 43(6): e190-e209, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37051927

RESUMO

BACKGROUND: Abnormal placental angiogenesis is an important cause of fetal intrauterine growth restriction (IUGR), but its underlying mechanisms and therapies remain unclear. Adenosine and its mediated signaling has been reported to be associated with the development of angiogenesis. However, whether the adenosine-related signaling plays a role in modulating angiogenesis in placenta and the IUGR pregnancy outcomes remains unclear. METHODS: The angiogenesis and adenosine signaling expressions in normal and IUGR placentas were detected in different species. And the role of adenosine in regulating IUGR pregnancy outcomes was evaluated using diet-induced IUGR mouse model. Molecular mechanisms underlying adenosine-induced angiogenesis were investigated by in vitro angiogenesis assays and in vivo Matrigel plug assays. RESULTS: Here, we demonstrated poor angiogenesis and low adenosine concentration and downregulated expression of its receptor A2a (ADORA2A [adenosine A2a receptor]) in IUGR placenta. Additionally, the beneficial effects of adenosine in improving IUGR pregnancy outcomes were revealed in a diet-induced IUGR mouse model. Moreover, adenosine was found to effectively improve adenosine signaling and angiogenesis in IUGR mice placenta. Mechanistically, by using angiogenesis assays in vitro and in vivo, adenosine was shown to activate ADORA2A to promote the phosphorylation of Stat3 (signal transducer and activator of transcription 3) and Akt (protein kinase B), resulting in increased Ang (angiogenin)-dependent angiogenesis. CONCLUSIONS: Collectively, this study uncovers an unexpected mechanism of promoting placental angiogenesis by adenosine-ADORA2A signaling and advances the translation of this signaling as a prognostic indicator and therapeutic target in IUGR treatment.


Assuntos
Placenta , Proteínas Proto-Oncogênicas c-akt , Animais , Feminino , Humanos , Camundongos , Gravidez , Retardo do Crescimento Fetal/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor A2A de Adenosina/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Metabolites ; 13(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36984766

RESUMO

Transportation is common in cats and often causes stress and intestinal disorders. Antimicrobial peptides (AMPs) exhibit a broad spectrum of antibacterial activity, and they may have the capacity for antioxidant and immune regulation. The objective of this study was to investigate the effects of dietary supplementation with AMPs on stress response, gut microbiota and metabolites of cats that have undergone transport stress. A total of 14 Ragdoll cats were randomly allocated into 2 treatments: basal diet (CON) and a basal diet supplemented with 0.3% AMPs. After a 6-week feeding period, all cats were transported for 3 h and, then, fed for another week. The results show that the diarrhea rate of cats was markedly reduced by supplementation with AMPs throughout the trial period (p < 0.05). In addition, AMPs significantly reduced serum cortisol and serum amyloid A (p < 0.05) and increased apolipoprotein 1 after transportation (p < 0.05). Moreover, AMPs reduced the level of inflammatory factors in the serum caused by transportation stress, including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) (p < 0.05). The AMPs enhanced the activities of glutathione peroxidase (p < 0.01) and superoxide dismutase (p < 0.05). Furthermore, cats fed AMPs had higher levels of branched chain fatty acids (BCFAs) and a relative abundance of Blautia and a lower relative abundance of Negativibacillus after transportation (p < 0.05). The serum metabolome analysis further revealed that AMPs markedly regulated lipid metabolism by upregulating cholic acid expression. In conclusion, AMP supplementation alleviated oxidative stress and inflammatory response in transportation by regulating the gut microbiota and metabolites, thereby relieving stress-induced diarrhea and supporting gut and host health in cats.

10.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734030

RESUMO

Inappropriate dietary management may lead to delayed recovery from castration surgery and significant weight gain in cats after castration. Wet canned food often exhibits more advantageous characteristics than dry food (e.g., higher palatability and digestibility, and lower energy density). This study compared the effects of canned and dry food on surgical recovery and weight management in cats after castration. Eighteen healthy cats (weighed 4.33 ± 1.04 kg and aged 18-months old) were allocated to one of the two dietary treatments (N = 9/group), dry (CON) and canned food (CAN) balanced for sex and initial BW. Cats were fed ad libitum for 7 weeks, including one week before surgery (week 0) and 6 weeks after surgery (week 1-6). Daily dry matter intake (DMI), and weekly body weight (BW) and body condition score (BCS) was obtained. Feces were collected for measuring nutrient digestibility and concentrations of short-chain fatty acids (SCFA) and branched-chain fatty acids (BCFA). Physical pain and wound surface assessment were performed at week 1. Blood was also collected intermittently for measuring biochemical indices and untargeted metabolomics analysis. Results indicated that BW, BCS and daily DMI in CON group increased (P < 0.05) over time after castration, but were maintained relatively stable in CAN group. Cats in CAN group exhibited less pain-related behavior as reflected by lower score of comfort (P < 0.05) and vocalization (P < 0.10), improved wound surface assessment (P < 0.10), lower level of lipase (P < 0.10) and ratio of blood urea nitrogen/serum creatinine (BUN/SC; P < 0.05), and higher level of superoxide dismutase (SOD; P < 0.05) in week 1 than CON cats. Meanwhile, the CAN group had significantly higher concentration of immunoglobulin G (IgG) on days 5 and 7, and higher level of high-density lipoprotein cholesterol (HDL-C; P < 0.10) but lower triglyceride (TG; P < 0.05) than CON group on day 20 and 48. Fecal total and most individual SCFA increased significantly from week 1 to week 6 regardless of diet, but the increase of butyric acid over time only occurred in CON group (P < 0.05). Also, serum metabolomic analysis revealed differential metabolic pathways between the two groups. Overall, compared with the dry food, the canned food tested in our study promoted cat wound recovery by reducing pain and increasing immune and antioxidative capacity after sterilizing surgery, and helped to maintain healthy body condition in cats after castration.


Castration is a surgical operation common in pet cats and dogs, and weight gain is often observed a period after castration. Nutritional management can be important for animal health in both processes. Due to differences in manufacturing techniques and nutrient composition, wet canned food generally exhibits higher palatability and lower energy density than dry food. Till date, few studies have explored if compared to dry kibbles, canned diet can have advantages in promoting recovery from castration surgery and maintaining normal body condition after castration in cats. In our study, dry and canned diets were fed to cats experiencing castration surgery with a free-feeding method. During the one week after surgery, cats fed canned food exhibited less pain and discomfort, and improved inflammation and antioxidative capacity than cats fed dry food. During the four weeks after surgery, cats fed dry food showed significantly more weight gain and change of body condition, meanwhile their blood and fecal measures resembled more of those observed in overweight and/or obese individuals than cats fed canned food. Collectively, canned food with high palatability and low energy density promoted the recovery of cats from the castration surgery and reduced their weight gain after castration.


Assuntos
Dieta , Ácidos Graxos , Masculino , Gatos , Animais , Peso Corporal , Dieta/veterinária , Fezes/química , Ácidos Graxos/análise , Ácidos Graxos Voláteis , Orquiectomia/veterinária , Ração Animal/análise , Digestão
11.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35844957

RESUMO

Background: Dietary nucleotides [inclusion adenosine 5'-monophosphate (AMP)] supplementation was shown to promote the feed intake of sows and increase the AMP content in their milk in our previous work, but whether AMP shapes the energy expenditure and lipid metabolism in mammals remains unknown. Here, we aimed to explore the effects and the related mechanism of dietary AMP supplementation on food intake, body composition, energy expenditure, and lipid metabolism in male mice. Methods: 4-week-old C57BL/6 mice (After a 1-wk adaptation) were fed with basal diet and basal diet supplemented with 0.1% AMP, respectively. Animal food intake and body weight were monitored and after 4 weeks all animals were sacrificed to measure the body composition, energy expenditure and lipid metabolism changes. Results: Compared with the control, the 0.1% AMP fed mice showed higher food intake while lower adipose weight. Intriguingly, dietary AMP supplementation was found to stimulate brown adipose tissue thermogenesis as evidenced by the increase in the uncoupling protein-1 level and the core temperature. Moreover, AMP supplementation was shown to promote white adipose tissue lipolysis as indicated by smaller lipid droplet size in mice. These results demonstrate that dietary AMP supplementation could enhance oxygen consumption and energy expenditure. Conclusions: This study highlights the physiological importance of AMP supplementation in mediating food intake and energy expenditure and suggests its potential as an adjuvant therapy in preventing energy metabolic disorders (mainly obesity and diabetes).

12.
Plant Cell ; 34(7): 2708-2729, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35404404

RESUMO

Stomatal opening is largely promoted by light-activated plasma membrane-localized proton ATPases (PM H+-ATPases), while their closure is mainly modulated by abscisic acid (ABA) signaling during drought stress. It is unknown whether PM H+-ATPases participate in ABA-induced stomatal closure. We established that BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) interacts with, phosphorylates and activates the major PM Arabidopsis H+-ATPase isoform 2 (AHA2). Detached leaves from aha2-6 single mutant Arabidopsis thaliana plants lost as much water as bak1-4 single and aha2-6 bak1-4 double mutants, with all three mutants losing more water than the wild-type (Columbia-0 [Col-0]). In agreement with these observations, aha2-6, bak1-4, and aha2-6 bak1-4 mutants were less sensitive to ABA-induced stomatal closure than Col-0, whereas the aha2-6 mutation did not affect ABA-inhibited stomatal opening under light conditions. ABA-activated BAK1 phosphorylated AHA2 at Ser-944 in its C-terminus and activated AHA2, leading to rapid H+ efflux, cytoplasmic alkalinization, and reactive oxygen species (ROS) accumulation, to initiate ABA signal transduction and stomatal closure. The phosphorylation-mimicking mutation AHA2S944D driven by its own promoter could largely compensate for the defective phenotypes of water loss, cytoplasmic alkalinization, and ROS accumulation in both aha2-6 and bak1-4 mutants. Our results uncover a crucial role of AHA2 in cytoplasmic alkalinization and ABA-induced stomatal closure during the plant's response to drought stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mutação/genética , Fosforilação , Estômatos de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Água/metabolismo
13.
J Anim Sci Biotechnol ; 12(1): 91, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34372937

RESUMO

BACKGROUND: Oxidative stress in placenta is associated with the occurrence of adverse pregnancy outcomes in sow, but there are few satisfactory treatment strategies for these conditions. This study investigated the potential of cysteamine (CS) as an antioxidant protectant for regulating the reproductive performance, redox status, and placental angiogenesis of sows. METHODS: The placental oxidative stress status and vascular density of piglets with different birth weights: < 1.0 kg (low birth weight, LBW) and 1.4-1.6 kg (normal birth weight, NBW) were evaluated, followed by allotting 84 sows to four treatments (n = 21) and feeding them with a basal diet supplemented with 0, 100, 300, or 500 mg/kg of CS from d 85 of gestation to d 21 of lactation, respectively. Placenta, serum, and colostrum samples of sows or piglets were collected, and the characteristics of sows and piglets were recorded. Furthermore, the in vivo results were validated using porcine vascular endothelial cells (PVECs). RESULTS: Compared with the NBW placentae, the LBW placentae showed increased oxidative damage and were vulnerable to angiogenesis impairment. Particularly, H2O2-induced oxidative stress prompted intracellular reactive oxygen species generation and inhibited the tube formation and migration of PVECs as well as the expression of vascular endothelial growth factor-A (VEGF-A) in vitro. However, dietary CS supplementation can alleviate oxidative stress and improve the reproductive performance of sows. Specifically, compared with the control group, dietary 100 mg/kg CS could (1) decrease the stillbirth and invalid rates, and increase both the piglet birth weight in the low yield sows and the placental efficiency; (2) increase glutathione and reduce malondialdehyde in both the serum and the colostrum of sows; (3) increase the levels of total antioxidant capacity and glutathione in LBW placentae; (4) increase the vascular density, the mRNA level of VEGF-A, and the immune-staining intensity of platelet endothelial cell adhesion molecule-1 in the LBW placentae. Furthermore, the in vitro experiment indicated that CS pre-treatment could significantly reverse the NADPH oxidase 2-ROS-mediated inactivation of signal transducer and activator of transcription-3 (Stat3) signaling pathway induced by H2O2 inhibition of the proliferation, tube formation, and migration of PVECs. Meanwhile, inhibition of Stat3 significantly decreased the cell viability, tube formation and the VEGF-A protein level in CS pretreated with H2O2-cultured PVECs. CONCLUSIONS: The results indicated that oxidative stress and impaired angiogenesis might contribute to the occurrence of LBW piglets during pregnancy, but CS supplementation at 100 mg/kg during late gestation and lactation of sows could alleviate oxidative stress and enhance angiogenesis in placenta, thereby increasing birth weight in low yield sows and reducing stillbirth rate. The in vitro data showed that the underlying mechanism for the positive effects of CS might be related to the activation of Stat3 in PVECs.

14.
Front Nutr ; 8: 679129, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222303

RESUMO

Background: Moutan cortex radicis (MCR), as a common traditional Chinese medicine, has been widely used as an antipyretic, antiseptic, and anti-inflammatory agent in China. Objectives: This study aimed to investigate the effects of dietary MCR supplementation on the antioxidant capacity and intestinal health of the pigs and to explore whether MCR exerts positive effects on intestinal health via regulating nuclear factor kappa-B (NF-κB) signaling pathway and intestinal microbiota. Methods: MCR powder was identified by LC-MS analysis. Selected 32 weaned piglets (21 d of age, 6.37 ± 0.10 kg average BW) were assigned (8 pens/diet, 1 pig/pen) to 4 groups and fed with a corn-soybean basal diet supplemented with 0, 2,000, 4,000, and 8,000 mg/kg MCR for 21 d. After the piglets were sacrificed, antioxidant indices, histomorphology examination, and inflammatory signaling pathway expression were assessed. The 16s RNA sequencing was used to analyze the effects of MCR on the intestinal microbiota structure of piglets. Results: Supplemental 4,000 mg/kg MCR significantly increased (P < 0.05) the average daily weight gain (ADG), average daily feed intake (ADFI), total antioxidative capability, colonic short-chain fatty acids (SCFA) concentrations, and the crypt depth in the jejunum but decreased (P < 0.05) the mRNA expression levels of interferon γ, tumor necrosis factor-α, interleukin-1ß, inhibiting kappa-B kinase ß (IKKß), inhibiting nuclear factor kappa-B (IκBα), and NF-κB in the jejunum and ileum. Microbiota sequencing identified that MCR supplementation significantly increased the microbial richness indices (Chao1, ACE, and observed species, P < 0.05) and the relative abundances of Firmicutes and Lactobacillus (P < 0.05), decreased the relative abundances of Bacteroides, Parabacteroides, unidentified_Lachnospiraceae, and Enterococcus (P < 0.05) and had no significant effects on the diversity indices (Shannon and Simpson, P > 0.05). Microbial metabolic phenotypes analysis also showed that the richness of aerobic bacteria and facultative anaerobic bacteria, oxidative stress tolerance, and biofilm forming were significantly increased (P < 0.05), and the richness of anaerobic bacteria and pathogenic potential of gut microbiota were reduced (P < 0.05) by MCR treatment. Regression analysis showed that the optimal MCR supplemental level for growth performance, serum antioxidant capacity, and intestinal health of weaned piglets was 3,420 ~ 4,237 mg/kg. Conclusions: MCR supplementation improved growth performance and serum antioxidant capacity, and alleviated intestinal inflammation by inhibiting the IKKß/IκBα/NF-κB signaling pathway and affecting intestinal microbiota in weaned piglets.

15.
Redox Biol ; 45: 102051, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34217063

RESUMO

Aberrant placental angiogenesis is associated with fetal intrauterine growth restriction (IUGR), but the mechanism underlying abnormal placental angiogenesis remains largely unknown. Here, lower vessel density and higher expression of NADPH oxidases 2 (Nox2) were observed in the placentae for low birth weight (LBW) fetuses versus normal birth weight (NBW) fetuses, with a negative correlation between Nox2 and placental vessel density. Moreover, it was revealed for the first time that Nox2 deficiency facilitates angiogenesis in vitro and in vivo, and vascular endothelial growth factor-A (VEGF-A) has an essential role in Nox2-controlled inhibition of angiogenesis in porcine vascular endothelial cells (PVECs). Mechanistically, Nox2 inhibited phospho-signal transducer and activator of transcription 3 (p-STAT3) in the nucleus by inducing the production of mitochondrial reactive oxygen species (ROS). Dual-luciferase assay confirmed that knockdown of Nox2 reduces the expression of VEGF-A in an STAT3 dependent manner. Our results indicate that Nox2 is a potential target for therapy by increasing VEGF-A expression to promote angiogenesis and serves as a prognostic indicator for fetus with IUGR.


Assuntos
NADPH Oxidase 2/metabolismo , Neovascularização Fisiológica , Placenta , Fator A de Crescimento do Endotélio Vascular , Animais , Células Endoteliais/metabolismo , Feminino , Placenta/metabolismo , Gravidez , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/genética , Suínos , Fator A de Crescimento do Endotélio Vascular/genética
16.
Anim Nutr ; 7(1): 111-118, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33997338

RESUMO

Increased metabolic burdens in breeding sows, which are induced by elevated systemic oxidative stress, could increase the need for nucleotides to repair lymphocyte DNA damage; however, de novo synthesis of nucleotides may be insufficient to cover this increased need. This study investigated the effects of dietary nucleotides on milk composition, oxidative stress status, and the reproductive and lactational performance of sows. Forty multiparous sows were assigned to 2 dietary treatments (Control group, and 1 g/kg Nucleotides group) based on a randomized complete block design using their BW at 85 d of gestation as a block. Sows from 2 groups were fed a restricted diet during gestation and ad libitum during lactation. The experiment lasted from 85 d of gestation to 21 d of lactation. The reproductive performance of sows and the growth performance of suckling piglets were measured. Oxidative stress parameters and milk components were also analysed. Data were analyzed using contrasts in the MIXED procedure of SAS. Sows in the Nucleotides group consumed more feed during the first week (P < 0.01) and from 1 to 21 d (P < 0.05) of lactation than those in Control group. Correspondingly, the litter weight gain of piglets showed a tendency to increase from cross-fostering to 9 d (P = 0.09) and from cross-fostering to 20 d (P = 0.10) in the Nucleotides group relative to the Control group. Additionally, the Nucleotides group was higher (P < 0.01) than the Control group in the concentrations of uridine 5'monophosphate, guanosine 5'monophosphate, inosine 5'monophosphate, adenosine 5'monophosphate and total nucleotides in milk. Furthermore, the Nucleotides group was higher (P < 0.01) than the Control group in the serum levels of total antioxidant capacity (P < 0.01) for sows at 109 d of gestation and glutathione peroxidase for weaning piglets, but lower at the levels of thiobarbituric acid-reactive substances (P < 0.05) in serum of weaning piglets. This study indicated that maternal dietary nucleotides could promote piglet growth, probably due to the higher lactational feed intake and higher concentration of nucleotides in the milk of sows, and lower oxidative stress for both sows and piglets.

17.
Front Immunol ; 12: 813890, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095912

RESUMO

Early-life exposure to environmental stress disrupts the gut barrier and leads to inflammatory responses and changes in gut microbiota composition. Gallic acid (GA), a natural plant polyphenol, has received significant interest for its antioxidant, anti-inflammatory, and antimicrobial properties that support the maintenance of intestinal health. To assess whether dietary supplementation of GA alleviates environmental stress, a total of 19 puppies were randomly allocated to the following three dietary treatments for 2 weeks: 1) basal diet (control (CON)); 2) basal diet + transportation (TS); and 3) basal diet with the addition of 500 mg/kg of GA + transportation (TS+GA). After a 1-week supplementation period, puppies in the TS and TS+GA groups were transported from a stressful environment to another livable location, and puppies in the CON group were then left in the stressful environment. Results indicated that GA markedly reduced the diarrhea rate in puppies throughout the trial period and caused a moderate decline of serum cortisol and HSP-70 levels after transportation. Also, GA alleviated the oxidative stress and inflammatory response caused by multiple environmental stressors. Meanwhile, puppies fed GA had a higher abundance of fecal Firmicutes and Lactobacillus and lower Proteobacteria, Escherichia-Shigella, and Clostridium_sensu_stricto_1 after transportation. As a result, the TS+GA group had the highest total short-chain fatty acids and acetic acid. Also, the fecal and serum metabolomics analyses revealed that GA markedly reversed the abnormalities of amino acid metabolism, lipid metabolism, carbohydrate metabolism, and nucleotide metabolism caused by stresses. Finally, Spearman's correlation analysis was carried out to explore the comprehensive microbiota and metabolite relationships. Overall, dietary supplementation of GA alleviates oxidative stress and inflammatory response in stressed puppies by causing beneficial shifts on gut microbiota and metabolites that may support gut and host health.


Assuntos
Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Microbiota/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fatores Etários , Ração Animal , Animais , Biomarcadores , Cães , Meio Ambiente , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Cromatografia Gasosa-Espectrometria de Massas , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , RNA Ribossômico 16S
18.
Anim Nutr ; 6(4): 447-456, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364461

RESUMO

Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy, amino acids, and minerals in animal production. Amino acid imbalance, especially methionine-to-sulfur amino acid (Met:SAA) ratio, caused by an imbalance of animal protein meal leads to growth restriction. This study was conducted to evaluate the effects of imbalanced Met:SAA ratio supplementation of different animal protein source diets on growth performance, plasma amino acid profiles, antioxidant capacity and intestinal morphology in a piglet model. Twenty-four weaned piglets (castrated males; BW = 10.46 ± 0.34 kg), assigned randomly into 3 groups (8 piglets/group), were fed for 28 d. Three experimental diets of equal energy and crude protein levels were as follows: 1) a corn-soybean basal diet with a Met:SAA ratio at 0.51 (BD); 2) a plasma powder diet with a low Met:SAA ratio at 0.41 (L-MR); 3) a fishmeal diet with a high Met:SAA ratio at 0.61 (H-MR). Results revealed that compared to BD, L-MR significantly decreased (P < 0.05) the activities of plasma total antioxidant capacity and glutathione peroxidase, plasma amino acid profiles, and significantly reduced (P < 0.05) villus height and crypt depth in the duodenum and jejunum. Additionally, L-MR significantly reduced (P < 0.05) the mRNA expression level of solute carrier family 7 member 9 (SlC7A9) in the ileum, and significantly increased (P < 0.05) mRNA expression levels of zonula occludens-1 (ZO-1) in the duodenum, and Claudin-1, ZO-1, sodium-coupled neutral amino acid transporters 2 (SNAT2) and SlC7A7 in the jejunum. H-MR significantly increased (P < 0.05) plasma SAA levels, and significantly reduced (P < 0.05) average daily feed intake, villus height, and villus height-to-crypt depth (VH:CD) ratio in the ileum compared to BD. In conclusion, L-MR may result in oxidative stress and villous atrophy but proves beneficial in improving intestinal barrier function and the activity of amino acid transporters for compensatory growth. H-MR may impair intestinal growth and development for weaned piglets. The research provides a guidance on the adequate Met:SAA ratio (0.51) supplementation in diet structure for weaned piglets.

19.
Front Immunol ; 11: 580208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042163

RESUMO

Gallic acid (GA) is a naturally occurring polyphenol compound present in fruits, vegetables, and herbal medicines. According to previous studies, GA has many biological properties, including antioxidant, anticancer, anti-inflammatory, and antimicrobial properties. GA and its derivatives have multiple industrial uses, such as food supplements or additives. Additionally, recent studies have shown that GA and its derivatives not only enhance gut microbiome (GM) activities, but also modulate immune responses. Thus, GA has great potential to facilitate natural defense against microbial infections and modulate the immune response. However, the exact mechanisms of GA acts on the GM and immune system remain unclear. In this review, first the physicochemical properties, bioavailability, absorption, and metabolism of GA are introduced, and then we summarize recent findings concerning its roles in gastrointestinal health. Furthermore, the present review attempts to explain how GA influences the GM and modulates the immune response to maintain intestinal health.


Assuntos
Anti-Inflamatórios/metabolismo , Ácido Gálico/metabolismo , Microbioma Gastrointestinal/imunologia , Intestinos/fisiologia , Animais , Homeostase , Humanos , Sistema Imunitário , Imunidade , Imunomodulação
20.
Mediators Inflamm ; 2020: 6020247, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029104

RESUMO

Liver disorder often occurs in patients with inflammatory bowel disease (IBD); however, the changes in IBD-induced liver disorder at the intrinsic molecular level (chiefly metabolites) and therapeutic targets are still poorly characterized. First, a refined and translationally relevant model of DSS chronic colitis in C57BL/6 mice was established, and cecropin A and antibiotics were used as interventions. We found that the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in the liver tissues of mice were highly increased in the context of DSS treatment but were lowered by cecropin A and antibiotics. Subsequently, an untargeted metabolomics analysis was performed by UPLC-Orbitrap-MS/MS to reveal the metabolic profile and attempt to find the potential therapeutic targets of the liver disorders that occur in IBD. Notably, 133 metabolites were identified by an integrated database. Metabolism network and pathway analyses demonstrated that the metabolic disturbance of the liver in IBD mice was mainly enriched in bile acid metabolism, arachidonic acid metabolism, amino acid metabolism, and steroid hormone biosynthesis, while those disturbances were regulated or reversed through cecropin A and antibiotic treatment. Furthermore, the top 20 metabolites, such as glutathione, maltose, arachidonic acid, and thiamine, were screened as biomarkers via one-way analysis of variance (one-way ANOVA, p < 0.05) coupled with variable importance for project values (VIP >1) of orthogonal partial least-squares discriminant analysis (OPLS-DA), which could be upregulated or downregulated with the cecropin A and antibiotics treatment. Spearman correlation analysis showed that the majority of the biomarkers have a significant correlation with cytokines (TNF-α, IL-1ß, IL-6, and IL-10), indicating that those biomarkers may act as potential targets to interact directly or indirectly with cecropin A and antibiotics to affect liver inflammation. Collectively, our results extend the understanding of the molecular alteration of liver disorders occurring in IBD and offer an opportunity for discovering potential therapeutic targets in the IBD process.


Assuntos
Biomarcadores/sangue , Sulfato de Dextrana/toxicidade , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Colite/sangue , Colite/induzido quimicamente , Ensaio de Imunoadsorção Enzimática , Gentamicinas/uso terapêutico , Interleucina-10/sangue , Interleucina-6/sangue , Análise dos Mínimos Quadrados , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA