Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virology ; 567: 15-25, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942562

RESUMO

HPV68 is a common HR-HPV, its persistent infection is closely related with the occurrence of cervical cancer. In this study, 2939 (27.60%, 2939/10650) positive samples were detected, and 174 (5.92%, 174/2939) were HPV68. 150 HPV68 E6-E7 were successful sequenced, 4 non-synonymous mutations were detected in E6, and E7 were 12. N133S non-synonymous mutations of HPV 68 E6 and C67G, T68 A/M of HPV68 E7 are E6, E7 positive selection sites, they all located in the key domains and major motifs of E6/E7 protein, the above amino-acid substitutions changed the protein structure, disturbed the interaction with other protein or cellular factors and make a difference in epitopes affinity, may affect the pathogenicity and adaptability of HPV68 to the environment. The enrichment of HPV68 data is of great significance for understanding the inherent geographical and biological differences of HPV68 in China.


Assuntos
Alphapapillomavirus/genética , Mutação , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/epidemiologia , Alphapapillomavirus/química , Alphapapillomavirus/classificação , Alphapapillomavirus/imunologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Linfócitos B/imunologia , Linfócitos B/virologia , Sítios de Ligação , Colo do Útero/imunologia , Colo do Útero/virologia , China/epidemiologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Feminino , Genótipo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Modelos Moleculares , Tipagem Molecular , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Proteínas E7 de Papillomavirus/química , Proteínas E7 de Papillomavirus/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Filogenia , Prevalência , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Linfócitos T/imunologia , Linfócitos T/virologia
2.
Virol J ; 18(1): 94, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941222

RESUMO

BACKGROUND: Variations in human papillomavirus (HPV) E6 and E7 have been shown to be closely related to the persistence of the virus and the occurrence and development of cervical cancer. Long control region (LCR) of HPV has been shown multiple functions on regulating viral transcription. In recent years, there have been reports on E6/E7/LCR of HPV-16 and HPV-58, but there are few studies on HPV-52, especially for LCR. In this study, we focused on gene polymorphism of the HPV-52 E6/E7/LCR sequences, assessed the effects of variations on the immune recognition of viral E6 and E7 antigens, predicted the effect of LCR variations on transcription factor binding sites and provided more basic date for further study of E6/E7/LCR in Chengdu, China. METHODS: LCR/E6/E7 of the HPV-52 were amplified and sequenced to do polymorphic and phylogenetic analysis. Sequences were aligned with the reference sequence by MEGA 7.0 to identify SNP. A neighbor-joining phylogenetic tree was constructed by MEGA 7.0, followed by the secondary structure prediction of the related proteins using PSIPRED 4.0. The selection pressure of E6 and E7 coding regions were estimated by Bayes empirical Bayes analysis of PAML 4.9. The HLA class-I and II binding peptides were predicted by the Immune Epitope Database server. The B cell epitopes were predicted by ABCpred server. Transcription factor binding sites in LCR were predicted by JASPAR database. RESULTS: 50 SNP sites (6 in E6, 10 in E7, 34 in LCR) were found. From the most variable to the least variable, the nucleotide variations were LCR > E7 > E6. Two deletions were found between the nucleotide sites 7387-7391 (TTATG) and 7698-7700 (CTT) in all samples. A deletion was found between the nucleotide sites 7287-7288 (TG) in 97.56% (40/41) of the samples. The combinations of all the SNP sites and deletions resulted in 12 unique sequences. As shown in the neighbor-joining phylogenetic tree, except for one belonging to sub-lineage C2, others sequences clustered into sub-lineage B2. No positive selection was observed in E6 and E7. 8 non-synonymous amino acid substitutions (including E3Q and K93R in the E6, and T37I, S52D, Y59D, H61Y, D64N and L99R in the E7) were potential affecting multiple putative epitopes for both CD4+ and CD8+ T-cells and B-cells. A7168G was the most variable site (100%) and the binding sites for transcription factor VAX1 in LCR. In addition, the prediction results showed that LCR had the high probability binding sites for transcription factors SOX9, FOS, RAX, HOXA5, VAX1 and SRY. CONCLUSION: This study provides basic data for understanding the relation among E6/E7/LCR mutations, lineages and carcinogenesis. Furthermore, it provides an insight into the intrinsic geographical relatedness and biological differences of the HPV-52 variants, and contributes to further research on the HPV-52 therapeutic vaccine development.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus , Filogenia , Alphapapillomavirus/genética , Teorema de Bayes , China , Epitopos de Linfócito B , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/virologia , Fatores de Transcrição , Neoplasias do Colo do Útero/virologia , Desenvolvimento de Vacinas
3.
Virol J ; 18(1): 72, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832494

RESUMO

BACKGROUND: Human papillomavirus type 39 associated with genital intraepithelial neoplasia and invasive cancers, has a high prevalence in Southwest China. HPV E6, E7 are two main papillomavirus oncoproteins, closely relate to the function of HPV immortalization, cell transformation, and carcinogenesis. L1 is the major capsid protein, can reflect the replication status of the virus in cells and the progression of cervical lesions. The purpose of this study is to reveal the prevalence of HPV 39 and the genetic polymorphisms of HPV39 based on E6, E7 and L1 gene in southwest China. METHODS: Cell samples were collected by cervical scraped for HPV detecting and typing, and HPV39 positive samples were selected out. Important E6, E7 and L1 genes of HPV39 were sequenced and analyzed for the study of HPV39 genetic polymorphisms. Phylogenetic trees were constructed by Maximum-likelihood and Kimura 2-parameters methods in Molecular Evolutionary Genetics Analysis version 6.0. The selection pressures of E6, E7 and L1 genes were estimated by Datamonkey web server. The secondary and three-dimensional structure of HPV39 E6, E7 proteins were created by sopma server and SWISS-MODEL software. RESULTS: 344 HPV39 positive samples were selected from 5718 HPV positive cell samples. Among HPV39 E6-E7 sequences, 20 single nucleotide mutations were detected, including 10 non-synonymous and 10 synonymous mutations; 26 single nucleotide mutations were detected in HPV39 L1 sequences, including 7 non-synonymous and 19 synonymous mutations respectively. 11 novel variants of HPV39 E6-E7 (5 in E6 and 6 in E7) and 14 novel variants of HPV39 L1 were identified in this study. A-branch was the most frequent HPV39 lineage in southwest China during our investigation. Selective pressure analysis showed that codon sites 26, 87, 151 in E6 and 75, 180, 222, 272, 284, 346, 356 in L1 were positively selected sites, as well as codon sites 45, 138, 309, 381 were negative selection sites in L1 gene, E7 has neither positive selection sites nor negative selection sites. A certain degree of secondary and three-dimensional structure dislocation was existed due to the non-synonymous mutations. CONCLUSIONS: Amino acid substitution affected the secondary and three-dimensional structure of HPV39, and resulting in the differences of carcinogenic potential and biological functions as well as the immune response due to the antigen epitopes difference, the antigen epitopes with stronger adaptability in Southwest will be screened out based on the above research results for the later vaccine development. And gene polymorphism of HPV39 in Southwest China may improve the effectiveness of clinical test and vaccine design, specifically for women in Southwest China.


Assuntos
Alphapapillomavirus , Genes Virais , Variação Genética , Infecções por Papillomavirus , Alphapapillomavirus/genética , China , Análise Mutacional de DNA , Epitopos , Feminino , Humanos , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , Filogenia , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA