Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Adv Sci (Weinh) ; 11(12): e2306964, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234236

RESUMO

The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology. The microspheres are covalently linked with vancomycin (Van) through an oligonucleotide (oligo) linker using an EDC/NHS carboxyl activator. Accordingly, a smart nano-micro composite called "CaP@MS-Oligo-Van" is synthesized. The porous CaP@MS-Oligo-Van composites can target and capture bacteria. They can also release Van in response to the presence of bacterial micrococcal nuclease and Ca2+, exerting additional antibacterial effects and inhibiting the inflammatory response. Finally, the released CaP nanosheets can promote bone tissue repair. Overall, the findings show that a rapid, targeted drug release system based on CaP@MS-Oligo-Van can effectively target bone tissue infections. Hence, this agent holds potential in the clinical treatment of osteomyelitis caused by MRSA.


Assuntos
Fosfatos de Cálcio , Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia
2.
Biomaterials ; 295: 122035, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764193

RESUMO

Radiation therapy (RT) is one of the most widely used cancer treatments. However, the vigorous biosynthesis of cancer cells plays an important role for RT resistance. Herein, we develop a hafnium-based nanoscale metal-organic frameworks (Hf-nMOFs) loaded with 3-bromopyruvate (3-BrPA) to overcome RT resistance and achieve favorable RT efficacy. The deposition of X-rays is greatly enhanced by Hf-nMOFs to induce stronger damage to DNA in RT. Simultaneously, as an inhibitor of glycolysis, the loaded 3-BrPA can reduce the supply of energy and interfere with the biosynthesis of proteins to decrease the DNA damage repair. As a result, the 3-BrPA@Hf-nMOFs (BHT) will overcome the RT resistance and enhance the curative effect of RT. Up and down-regulated genes as well as the related pathways in cellular metabolism and biosynthesis are well investigated to reveal the radiosensitization mechanism of BHT. In addition, the Hf element endows BHT with CT imaging capability to real-timely monitor the therapeutic process. Hence, the designed strategy of biosynthesis-targeted radiosensitization could decrease the doses of ionizing radiations and provide fresh perspectives on cancer treatment.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/farmacologia , DNA
3.
Adv Mater ; 35(13): e2207744, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36626720

RESUMO

Nebulization is the most widely used respiratory delivery technique with non-invasive properties. However, nebulized drugs often fail to function due to the excretion and immune clearance of the respiratory system. In this work, inspired by pollen in nature, novel shell-core aerosol particles (APs) capable of Brownian motion are constructed for respiratory delivery. Drugs-loaded poly(lactic-co-glycolic acid) nanoparticles are prepared by emulsification to form the inner core, and the membranes of macrophages are extracted to form the outer shell. The optimized size and the shell-core structure endow APs with Brownian motion and atomization stability, thus enabling the APs to reach the bronchi and alveoli deeply for effective deposition. Camouflaging the macrophage membranes equips the APs with immune evasion. In vitro experiments prove that deferoxamine (DFO)-loaded APs (DFO@APs) can promote the angiogenesis of human umbilical vein endothelial cells. A hyperoxia-induced bronchopulmonary dysplasia (BPD) model is constructed to validate the efficiency of DFO@APs. In BPD mice, DFO@APs can release DFO in the alveolar interstitium, thus promoting the reconstruction of microvasculature, ultimately inducing lung development for treating BPD. In conclusion, this study develops "pollen"-inspired shell-core aerosol particles capable of Brownian motion, which provides a novel idea and theoretical basis for respiratory administration.


Assuntos
Pulmão , Alvéolos Pulmonares , Animais , Humanos , Camundongos , Aerossóis , Células Endoteliais da Veia Umbilical Humana
4.
Acta Biomater ; 155: 218-234, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396041

RESUMO

Wound repair involves a sophisticated process that includes angiogenesis, immunoregulation and collagen deposition. However, weak revascularization performance and the lack of biochemical cues to trigger immunomodulatory function currently limit biomaterial applications for skin regeneration and tissue engineering. Herein, we fabricate a new bioactive polypeptide hydrogel (QK-SF) constituted by silk fibroin (SF) and a vascular endothelial growth factor mimetic peptide KLTWQELYQLKYKGI (QK) for tissue regeneration by simultaneously promoting vascularization and macrophage polarization. Our results showed that this QK-SF hydrogel can be prepared via an easy manufacturing process, and exhibited good gel stability and low cytotoxicity to cultured human umbilical vein endothelial cells (HUVECs) via both live/dead and cell counting kit-8 assays. Importantly, this QK-SF hydrogel triggered macrophage polarization from M1 into M2, as exemplified by the enhanced expression of the M2 marker and decreased expression of the M1 marker in RAW264.7 cells. Furthermore, the QK-SF hydrogel showed high capacity for inducing endothelial growth, migration and angiogenesis, which were proved by increased expression of angiogenesis-related genes in HUVECs. Consistent with in vitro findings, in vivo data show that the QK-SF hydrogel promoted M2 polarization, keratinocyte differentiation, and collagen deposition in the mouse skin wound model in immunohistochemistry assay. Furthermore, this QK-SF hydrogel can reduce inflammation, induce angiogenesis and promote wound healing as exemplified by the increased vessel formation and decreased wound area in the mouse skin wound model. Altogether, these results indicate that the bioactive QK-SF hydrogel plays dual functional roles in promoting angiogenesis and immunoregulation for tissue regeneration. STATEMENT OF SIGNIFICANCE: The QK-SF hydrogel plays dual functional roles in promoting angiogenesis and immunoregulation for tissue repair and wound healing. The QK-SF hydrogel can be prepared via an easy manufacturing process, and exhibited good gel stability and low cytotoxicity to cultured HUVECs. The QK-SF hydrogel triggered macrophage polarization from M1 into M2. The QK-SF hydrogel showed high capacity for inducing endothelial growth, migration and angiogenesis. The QK-SF hydrogel promoted M2 polarization, keratinocyte differentiation, and collagen deposition.


Assuntos
Hidrogéis , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Colágeno/farmacologia , Colágeno/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Macrófagos/metabolismo
5.
Bioact Mater ; 19: 474-485, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35574049

RESUMO

The 3D printing technique is suitable for patient-specific implant preparation for bone repair after bone tumor resection. However, improving the survival rate due to tumor recurrence remains a challenge for implants. The macrophage polarization induction to M2-type tumor-associated macrophages (TAMs) by the tumor microenvironment is a key factor of immunosuppression and tumor recurrence. In this study, a regenerative scaffold regulating the macrophage immune microenvironment and promoting bone regeneration in a dual-stage process for the postoperative treatment of bone tumors was constructed by binding a colony-stimulating factor 1 receptor (CSF-1R) inhibitor GW2580 onto in situ cosslinked hydroxybutylchitosan (HBC)/oxidized chondroitin sulfate (OCS) hydrogel layer covering a 3D printed calcium phosphate scaffold based on electrostatic interaction. The hydrogel layer on scaffold surface not only supplied abundant sulfonic acid groups for stable loading of the inhibitor, but also acted as the cover mask protecting the bone repair part from exposure to unhealthy growth factors in the microenvironment at the early treatment stage. With local prolonged release of inhibitor being realized via the functional material design, CSF-1R, the main pathway that induces polarization of TAMs, can be efficiently blocked, thus regulating the immunosuppressive microenvironment and inhibiting tumor development at a low therapeutic dose. At the later stage of treatment, calcium phosphate component of the scaffold can facilitate the repair of bone defects caused by tumor excision. In conclusion, the difunctional 3D printed bone repair scaffold regulating immune microenvironment in stages proposed a novel approach for bone tumor postoperative treatment.

6.
J Med Chem ; 65(16): 10992-11009, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35960655

RESUMO

Receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, play pivotal roles in bone remodeling. The monoclonal antibody denosumab successfully inhibited the maturation of osteoclasts (OCs) by binding to RANKL in the clinic. We continued our efforts to develop small-molecule inhibitors of RANKL. In this work, 41 ß-carboline derivatives were synthesized based on previously synthesized compound Y1599 to improve its drug-like properties. Compound Y1693 was identified as a potent RANKL inhibitor that improved absorption-distribution-metabolism-excretion properties and effectively prevented RANKL-induced osteoclastogenesis and bone resorption. Furthermore, Y1693 also suppressed the expression of OC marker genes. Moreover, Y1693 demonstrated good tolerability and efficacy in an orally administered mouse model of osteoporosis as well as the ability to rescue alveolar bone loss in vivo caused by periodontal disease. Collectively, the above findings may provide a valuable direction for the development of novel antiresorptive therapies that target RANKL.


Assuntos
Reabsorção Óssea , Ligante RANK , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Ligantes , Camundongos , NF-kappa B/metabolismo , Osteoclastos , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo
7.
Adv Mater ; 34(15): e2110283, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35179801

RESUMO

Deleterious effects to normal tissues and short biological half-life of sonosensitizers limit the applications of sonodynamic therapy (SDT). Herein, a new sonosensitizer (Cu(II)NS) is synthesized that consists of porphyrins, chelated Cu2+ , and poly(ethylene glycol) (PEG) to overcome the challenges of SDT. As Cu2+ contains 27 electrons, Cu(II)NS has an unpaired electron (open shell), resulting in a doublet ground state and little sonosensitivity. Overexpressed glutathione in the tumor can reduce Cu2+ to generate Cu(I)NS, leading to a singlet ground state and recuperative sonosensitivity. Additionally, PEG endows Cu(II)NS with increased blood biological half-life and enhanced tumor accumulation, further increasing the effect of SDT. Through regulating the valence state of Cu, cancer SDT with enhanced therapeutic index is achieved.


Assuntos
Neoplasias , Porfirinas , Terapia por Ultrassom , Linhagem Celular Tumoral , Glutationa , Humanos , Neoplasias/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Terapia por Ultrassom/métodos
8.
Cell Death Differ ; 29(6): 1123-1136, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35091692

RESUMO

Bone homeostasis is maintained through a balance of bone formation by osteoblasts and bone resorption by osteoclasts. Ubiquitin-specific proteases (USPs) are involved in regulating bone metabolism by preserving bone formation or antagonizing bone resorption. However, the specific USPs that maintain bone homeostasis by orchestrating bone formation and bone resorption simultaneously are poorly understood. Here, we identified USP26 as a previously unknown regulator of bone homeostasis that coordinates bone formation and resorption. Mechanistically, USP26 stabilizes ß-catenin to promote the osteogenic activity of mesenchymal cells (MSCs) and impairs the osteoclastic differentiation of bone myelomonocytes (BMMs) by stabilizing inhibitors of NF-κBα (IκBα). Gain-of-function experiments revealed that Usp26 supplementation significantly increased bone regeneration in bone defects in aged mice and decreased bone loss resulting from ovariectomy. Taken together, these data show the osteoprotective effect of USP26 via the coordination of bone formation and resorption, suggesting that USP26 represents a potential therapeutic target for osteoporosis.


Assuntos
Reabsorção Óssea , Osteogênese , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular , Cisteína Endopeptidases/metabolismo , Feminino , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteogênese/fisiologia
9.
Nat Commun ; 13(1): 160, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013289

RESUMO

Immune response and new tissue formation are important aspects of tissue repair. However, only a single aspect is generally considered in previous biomedical interventions, and the synergistic effect is unclear. Here, a dual-effect coating with immobilized immunomodulatory metal ions (e.g., Zn2+) and osteoinductive growth factors (e.g., BMP-2 peptide) is designed via mussel adhesion-mediated ion coordination and molecular clicking strategy. Compared to the bare TiO2 group, Zn2+ can increase M2 macrophage recruitment by up to 92.5% in vivo and upregulate the expression of M2 cytokine IL-10 by 84.5%; while the dual-effect of Zn2+ and BMP-2 peptide can increase M2 macrophages recruitment by up to 124.7% in vivo and upregulate the expression of M2 cytokine IL-10 by 171%. These benefits eventually significantly enhance bone-implant mechanical fixation (203.3 N) and new bone ingrowth (82.1%) compared to the bare TiO2 (98.6 N and 45.1%, respectively). Taken together, the dual-effect coating can be utilized to synergistically modulate the osteoimmune microenvironment at the bone-implant interface, enhancing bone regeneration for successful implantation.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Interface Osso-Implante/crescimento & desenvolvimento , Macrófagos/efeitos dos fármacos , Titânio/farmacologia , Zinco/farmacologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Bivalves/química , Diferenciação Celular/efeitos dos fármacos , Fêmur/citologia , Fêmur/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/imunologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/imunologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Precursores de Proteínas/farmacologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
10.
Adv Mater ; 34(5): e2106564, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34816470

RESUMO

Antiadhesion barriers such as films and hydrogels used to wrap repaired tendons are important for preventing the formation of adhesion tissue after tendon surgery. However, sliding of the tendon can compress the adjacent hydrogel barrier and cause it to rupture, which may then lead to unexpected inflammation. Here, a self-healing and deformable hyaluronic acid (HA) hydrogel is constructed as a peritendinous antiadhesion barrier. Matrix metalloproteinase-2 (MMP-2)-degradable gelatin-methacryloyl (GelMA) microspheres (MSs) encapsulated with Smad3-siRNA nanoparticles are entrapped within the HA hydrogel to inhibit fibroblast proliferation and prevent peritendinous adhesion. GelMA MSs are responsively degraded by upregulation of MMP-2, achieving on-demand release of siRNA nanoparticles. Silencing effect of Smad3-siRNA nanoparticles is around 75% toward targeted gene. Furthermore, the self-healing hydrogel shows relatively attenuated inflammation compared to non-healing hydrogel. The mean adhesion scores of composite barrier group are 1.67 ± 0.51 and 2.17 ± 0.75 by macroscopic and histological evaluation, respectively. The proposed self-healing hydrogel antiadhesion barrier with MMP-2-responsive drug release behavior is highly effective for decreasing inflammation and inhibiting tendon adhesion. Therefore, this research provides a new strategy for the development of safe and effective antiadhesion barriers.


Assuntos
Hidrogéis , Metaloproteinase 2 da Matriz , Humanos , Hidrogéis/farmacologia , Macrófagos/patologia , Metaloproteinase 2 da Matriz/genética , Tendões/cirurgia , Aderências Teciduais/tratamento farmacológico , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle
11.
Adv Mater ; 34(9): e2108325, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902192

RESUMO

Endogenous electric fields (EF) are the basis of bioelectric signal conduction and the priority signal for damaged tissue regeneration. Tissue exudation directly affects the characteristics of endogenous EF. However, current biomaterials lead to passive repair of defect tissue due to limited management of early wound exudates and inability to actively respond to coupled endogenous EF. Herein, the 3D bionic short-fiber scaffold with the functions of early biofluid collection, response to coupled endogenous EF, is constructed by guiding the short fibers into a 3D network structure and subsequent multifunctional modification. The scaffold exhibits rapid reversible water absorption, reaching maximum after only 30 s. The stable and uniform distribution of polydopamine-reduced graphene oxide endows the scaffold with stable electrical and mechanical performances even after long-term immersion. Due to its unique - bionic structure and tissue affinity, the scaffold further acts as an "electronic skin," which transmits endogenous bioelectricity via absorbing wound exudates, promoting the treatment of diabetic wounds. Furthermore, under the endogenous EF, the cascade release of vascular endothelial growth factor accelerates the healing process. Thus, the versatile scaffold is expected to be an ideal candidate for repairing different defect tissues, especially electrosensitive tissues.


Assuntos
Fator A de Crescimento do Endotélio Vascular , Cicatrização , Materiais Biocompatíveis/química , Eletricidade
13.
Biomaterials ; 279: 121194, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34700222

RESUMO

In the microenvironment of an organism, each element always regulates and compensates for each other's defects, finally achieving biostable equilibrium. Herein, inspired by the balance of biological homeostasis and the interconstraint of elements, light-responsive nanoparticle with anti-vascularization and oxygen-supplying ability such like a homeostasis body is constructed by the electrostatic adsorption of reactive oxygen species (ROS)-responsive copolymers with photosensitizers and oxygen donors, which act as the elements of homeostasis body can interact through multistage reactions forming a balance that induces double apoptosis including those caused by the photosensitizer itself and those induced after oxygenation. In this homeostasis body, the element photosensitizer can simultaneously generate hyperthermia and ROS. The former can not only inhibit the growth of blood vessels and promote cell necrosis, but induce the thermally responsive release of oxygen to alleviate tumor hypoxia for enhanced PDT. And the latter will induce rapid depolymerization of nanoparticles, promote the penetration and finally induce double apoptosis through multistage reactions. Immunofluorescence data further demonstrate that the nanoparticles significantly alleviated tumor hypoxia upon photoexcitation. Thus, such nanoparticles with multistage synergistic effects have demonstrated excellent effects in achieving biostable equilibrium to induce dual apoptosis and may also be a good strategy in hypoxic tumors therapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Apoptose , Linhagem Celular Tumoral , Homeostase , Fármacos Fotossensibilizantes/farmacologia
14.
Cell Rep ; 35(8): 109131, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038723

RESUMO

Communication between biological components is critical for homeostasis maintenance among the convergence of complicated bio-signals. For therapeutic nanoparticles (NPs), the general lack of effective communication mechanisms with the external cellular environment causes loss of homeostasis, resulting in deprived autonomy, severe macrophage-mediated clearance, and limited tumor accumulation. Here, we develop a multistage signal-interactive system on porous silicon particles through integrating the Self-peptide and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide into a hierarchical chimeric signaling interface with "don't eat me" and "eat me" signals. This biochemical transceiver can act as both the signal receiver for amantadine to achieve NP transformation and signal conversion as well as the signal source to present different signals sequentially by reversible self-mimicking. Compared with the non-interactive controls, these signal-interactive NPs loaded with AS1411 and tanespimycin (17-AAG) as anticancer drugs improve tumor targeting 2.8-fold and tumor suppression 6.5-fold and showed only 51% accumulation in the liver with restricted hepatic injury.


Assuntos
Comunicação Celular/imunologia , Nanopartículas/metabolismo , Neoplasias/imunologia , Humanos , Modelos Moleculares , Estadiamento de Neoplasias , Transdução de Sinais
15.
J Cell Mol Med ; 25(11): 5283-5294, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939310

RESUMO

Osteoarthritis (OA) is one of the most frequent chronic joint diseases with the increasing life expectancy. The main characteristics of the disease are loss of articular cartilage, subchondral bone sclerosis and synovium inflammation. Physical measures, drug therapy and surgery are the mainstay of treatments for OA, whereas drug therapies are mainly limited to analgesics, glucocorticoids, hyaluronic acids and some alternative therapies because of single therapeutic target of OA joints. Baicalein, a traditional Chinese medicine extracted from Scutellaria baicalensis Georgi, has been widely used in anti-inflammatory therapies. Previous studies revealed that baicalein could alleviate cartilage degeneration effectively by acting on articular chondrocytes. However, the mechanisms involved in baicalein-mediated protection of the OA are not completely understood in consideration of integrality of arthrosis. In this study, we found that intra-articular injection of baicalein ameliorated subchondral bone remodelling. Further studies showed that baicalein could decrease the number of differentiated osteoblasts by inhibiting pre-osteoblasts proliferation and promoting pre-osteoblasts apoptosis. In addition, baicalein impaired angiogenesis of endothelial cells and inhibited proliferation of synovial cells. Taken together, these results implicated that baicalein might be an effective medicine for treating OA by regulating multiple targets.


Assuntos
Osso e Ossos/efeitos dos fármacos , Flavanonas/farmacologia , Inflamação/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Osteoartrite/prevenção & controle , Osteogênese , Membrana Sinovial/efeitos dos fármacos , Animais , Remodelação Óssea , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Proliferação de Células , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos , Ratos Sprague-Dawley
16.
FASEB J ; 35(3): e21405, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559950

RESUMO

Microglia activation and release of pro-inflammatory cytokines have been closely linked to glaucoma. However, the mechanisms that initiate these pathways remain unclear. Here, we investigated the role of a pro-inflammatory cytokine--osteopontin (OPN), in retinal microglia activation process along with the underlying mechanisms in glaucoma. A rat chronic ocular hypertension (COH) model was established presenting an increase in retinal OPN level and activation of microglia. Primary microglia cells were isolated and cultured under a pressure culture system showing heightened expressions of microglia-derived OPN with changes in inflammatory factors (TNF-α, IL-1ß, and IL-6). OPN and OPN neutralizing antibody (Anti-OPN) interventions were both applied systems for comparison, and cross-referenced with OPN knockdown in vitro. JAK/STAT, NF-κB, ERK1/2, and p38 MAPK, recognized as the primary signaling pathways related to microglia activation, were then screened on whether they can facilitate OPN to act on microglia and their impact on specific inhibitors. Thereafter, retrograde labeling of retinal ganglion cells (RGCs) and flash visual evoked potentials (F-VEP) were used to investigate neuron protection in context of each blockade. Results suggest that OPN is able to enhance the proliferation and activation of retinal microglia in experimental glaucoma which may play a role in the glaucomatous optic neuropathy, and contribute to the eventual RGCs loss and vision function impairment. Such effect may be mediated through the regulation of p38 MAPK signaling pathway.


Assuntos
Glaucoma/tratamento farmacológico , Hipertensão Ocular/etiologia , Osteopontina/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Potenciais Evocados Visuais/efeitos dos fármacos , Potenciais Evocados Visuais/fisiologia , Glaucoma/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Hipertensão Ocular/metabolismo , Osteopontina/metabolismo , Ratos Sprague-Dawley , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
Small ; 16(44): e2004519, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32940012

RESUMO

Osteoarthritis, a lubrication dysfunction related disorder in joint, is characterized by articular cartilage degradation and joint capsule inflammation. Enhancing joint lubrication, combined with anti-inflammatory therapy, is considered as an effective strategy for osteoarthritis treatment. Herein, based on the ball-bearing-inspired superlubricity and the mussel-inspired adhesion, a superlubricated microsphere, i.e., poly (dopamine methacrylamide-to-sulfobetaine methacrylate)-grafted microfluidic gelatin methacrylate sphere (MGS@DMA-SBMA), is developed by fabricating a monodisperse, size-uniform microsphere using the microfluidic technology, and then a spontaneously modified microsphere with DMA-SBMA copolymer by a one-step biomimetic grafting approach. The microspheres are endowed with enhanced lubrication due to the tenacious hydration layer formed around the charged headgroups (-N+ (CH3 )2 - and -SO3- ) of the grafted poly sulfobetaine methacrylate (pSBMA), and simultaneously are capable of efficient drug loading and release capability due to their porous structure. Importantly, the grafting of pSBMA enables the microspheres with preferable properties (i.e., enhanced lubrication, reduced degradation, and sustained drug release) that are highly desirable for intraarticular treatment of osteoarthritis. In addition, when loaded with diclofenac sodium, the superlubricated microspheres with excellent biocompatibility can inhibit the tumor necrosis factor α (TNF-α)-induced chondrocyte degradation in vitro, and further exert a therapeutic effect toward osteoarthritis in vivo.


Assuntos
Lubrificantes , Osteoartrite , Humanos , Metacrilatos , Microesferas , Osteoartrite/tratamento farmacológico , Polímeros
18.
Nat Commun ; 11(1): 4504, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908131

RESUMO

The strategies concerning modification of the complex immune pathological inflammatory environment during acute spinal cord injury remain oversimplified and superficial. Inspired by the acidic microenvironment at acute injury sites, a functional pH-responsive immunoregulation-assisted neural regeneration strategy was constructed. With the capability of directly responding to the acidic microenvironment at focal areas followed by triggered release of the IL-4 plasmid-loaded liposomes within a few hours to suppress the release of inflammatory cytokines and promote neural differentiation of mesenchymal stem cells in vitro, the microenvironment-responsive immunoregulatory electrospun fibers were implanted into acute spinal cord injury rats. Together with sustained release of nerve growth factor (NGF) achieved by microsol core-shell structure, the immunological fiber scaffolds were revealed to bring significantly shifted immune cells subtype to down-regulate the acute inflammation response, reduce scar tissue formation, promote angiogenesis as well as neural differentiation at the injury site, and enhance functional recovery in vivo. Overall, this strategy provided a delivery system through microenvironment-responsive immunological regulation effect so as to break through the current dilemma from the contradiction between immune response and nerve regeneration, providing an alternative for the treatment of acute spinal cord injury.


Assuntos
Microambiente Celular/imunologia , Sistemas de Liberação de Medicamentos/instrumentação , Fator de Crescimento Neural/administração & dosagem , Regeneração Nervosa/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Alicerces Teciduais , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Preparações de Ação Retardada/administração & dosagem , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Interleucina-4/administração & dosagem , Lipossomos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Fator de Crescimento Neural/farmacocinética , Regeneração Nervosa/imunologia , Ratos , Recuperação de Função Fisiológica/imunologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Traumatismos da Medula Espinal/imunologia
19.
Nano Lett ; 20(9): 6420-6428, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32813534

RESUMO

Inspired by the superlubricated surface (SLS) of ice, which consists of an ultrathin and contiguous layer of surface-bound water, we built a SLS on the polycaprolactone (PCL)/poly(2-methacryloxyethylphosphorylcholine) (PMPC) composite nanofibrous membrane via electrospinning under controlled relative humidity (RH). The zwitterionic PMPC on the nanofiber provided a surface layer of bound water, thus generating a hydration lubrication surface. Prepared under 20% RH, electrospun PCL/PMPC nanofibers reached a minimum coefficient of friction (COF) of about 0.12 when the weight ratio of PMPC to PCL was 0.1. At a higher RH, a SLS with an ultralow COF of less than 0.05 was formed on the composite nanofibers. The high stability of the SLS hydration layer on the engineered nanofibrous membrane effectively inhibited fibroblast adhesion and markedly reduced tissue adhesion during tendon repair in vivo. This work demonstrates the great potential of this ice-inspired SLS approach in tissue adhesion-prevention applications.


Assuntos
Nanofibras , Fibroblastos/patologia , Humanos , Membranas Artificiais , Poliésteres , Tendões/patologia , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle , Engenharia Tecidual , Alicerces Teciduais
20.
Cell Rep ; 30(6): 1951-1963.e4, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32049023

RESUMO

Bone metabolism depends on the balance between osteoclast-driven bone resorption and osteoblast-mediated bone formation. Diseases like osteoporosis are characterized by increased bone destruction due to partially enhanced osteoclastogenesis. Here, we report that the post-translational SUMO modification is critical for regulating osteoclastogenesis. The expression of the SUMO-specific protease SENP3 is downregulated in osteoclast precursors during osteoclast differentiation. Mice with SENP3 deficiency in bone marrow-derived monocytes (BMDMs) exhibit more severe bone loss due to over-activation of osteoclasts after ovariectomy. Deleting SENP3 in BMDMs promotes osteoclast differentiation. Mechanistically, loss of SENP3 increases interferon regulatory factor 8 (IRF8) SUMO3 modification at the K310 amino acid site, which upregulates expression of the nuclear factor of activated T cell c1 (NFATc1) and osteoclastogenesis. In summary, IRF8 de-SUMO modification mediated by SENP3 suppresses osteoclast differentiation and suggests strategies to treat bone loss diseases.


Assuntos
Medula Óssea/metabolismo , Cisteína Endopeptidases/metabolismo , Fatores Reguladores de Interferon/metabolismo , Monócitos/metabolismo , Osteoclastos/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteogênese , Osteoporose/metabolismo , Osteoporose/patologia , Transfecção , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA