Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4902-4907, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802832

RESUMO

Malaria, one of the major global public health events, is a leading cause of mortality and morbidity among children and adults in tropical and subtropical regions(mainly in sub-Saharan Africa), threatening human health. It is well known that malaria can cause various complications including anemia, blackwater fever, cerebral malaria, and kidney damage. Conventionally, cardiac involvement has not been listed as a common reason affecting morbidity and mortality of malaria, which may be related to ignored cases or insufficient diagnosis. However, the serious clinical consequences such as acute coronary syndrome, heart failure, and malignant arrhythmia caused by malaria have aroused great concern. At present, antimalarials are commonly used for treating malaria in clinical practice. However, inappropriate medication can increase the risk of cardiovascular diseases and cause severe consequences. This review summarized the research advances in the cardiovascular complications including acute myocardial infarction, arrhythmia, hypertension, heart failure, and myocarditis in malaria. The possible mechanisms of cardiovascular diseases caused by malaria were systematically expounded from the hypotheses of cell adhesion, inflammation and cytokines, myocardial apoptosis induced by plasmodium toxin, cardiac injury secondary to acute renal failure, and thrombosis. Furthermore, the effects of quinolines, nucleoprotein synthesis inhibitors, and artemisinin and its derivatives on cardiac structure and function were summarized. Compared with the cardiac toxicity of quinolines in antimalarial therapy, the adverse effects of artemisinin-derived drugs on heart have not been reported in clinical studies. More importantly, the artemisinin-derived drugs demonstrate favorable application prospects in the prevention and treatment of cardiovascular diseases, and are expected to play a role in the treatment of malaria patients with cardiovascular diseases. This review provides reference for the prevention and treatment of malaria-related cardiovascular complications as well as the safe application of antimalarials.


Assuntos
Antimaláricos , Artemisininas , Doenças Cardiovasculares , Insuficiência Cardíaca , Malária Cerebral , Quinolinas , Criança , Adulto , Humanos , Antimaláricos/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Artemisininas/farmacologia , Malária Cerebral/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Arritmias Cardíacas/tratamento farmacológico
2.
Am J Transl Res ; 11(4): 2168-2180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105826

RESUMO

The combination of tetramethylpyrazine phosphate (TMPP) and borneol (BO) protects against cerebral ischemia. However, the mechanism for their synergistic effect is unclear. In this study, an oxygen-glucose deprivation (OGD) injured brain model was induced in microvascular endothelium cells (BMECs). TMPP and BO concentrations were optimized according to an MTT assay. Cells were divided into five groups: control, model, TMPP, BO, and TMPP+BO. Subsequently, oxidative stress was evaluated based on the levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GSH-Px), and reactive oxygen species (ROS). Intracellular calcium ([Ca2+]i) was detected using a laser confocal microscope. Cellular apoptosis was examined via Hoechst 33342 staining, flow cytometry, and expression of p53, B-cell lymphoma 2 (BCL-2), BCL-2-like protein 4 (BAX), and caspase-3 mRNA. Angiogenesis was evaluated based on expression of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), fibroblast growth factor receptor 1 (FGFR1), Vascular endothelial growth factor receptor 1 (VEGFR1), and VEGFR2. Results showed that 5.0 µM TMPP and 0.5 µM BO were optimal. Monotherapy significantly enhanced CAT, BCL-2, and VEGF, and also reduced [Ca2+]i, apoptosis, and BAX. TMPP increased SOD, GSH-Px, and bFGF, and reduced MDA, ROS, p53, and caspase-3 levels. BO reduced VEGFR1 expression. TMPP+BO combination exhibited synergistic effects in decreasing apoptosis, and modulating expression of BCL-2, BAX, and VEGFR1. These results indicate that protection of OGD-injured BMECs by TMPP+BO combination involves anti-oxidation, apoptosis inhibition, and angiogenesis. Moreover, their synergistic mechanism was mainly related to the regulation of apoptosis and angiogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA