Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108480, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38089570

RESUMO

Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.

2.
Anal Chem ; 94(46): 15939-15947, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36347042

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) enables gas-phase separations on a chromatographic time scale and has become a useful tool for proteomic applications. Despite its emerging utility, however, the molecular determinants underlying peptide separation by FAIMS have not been systematically investigated. Here, we characterize peptide transmission in a FAIMS device across a broad range of compensation voltages (CVs) and used machine learning to identify charge state and three-dimensional (3D) electrostatic peptide potential as major contributors to peptide intensity at a given CV. We also demonstrate that the machine learning model can be used to predict optimized CV values for peptides, which significantly improves parallel reaction monitoring workflows. Together, these data provide insight into peptide separation by FAIMS and highlight its utility in targeted proteomic applications.


Assuntos
Espectrometria de Mobilidade Iônica , Proteômica , Proteômica/métodos , Espectrometria de Massas/métodos , Peptídeos/química
3.
Proc Natl Acad Sci U S A ; 119(31): e2203410119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878026

RESUMO

Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.


Assuntos
Fosfatase Ácida , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T , Fosfatase Ácida/metabolismo , Antígenos de Neoplasias/metabolismo , Epitopos , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Leucócitos Mononucleares , Neoplasias/imunologia , Peptídeos , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Cancer Discov ; 12(8): 1942-1959, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35638972

RESUMO

MAPK inhibitor (MAPKi) therapy in melanoma leads to the accumulation of tumor-surface PD-L1/L2, which may evade antitumor immunity and accelerate acquired resistance. Here, we discover that the E3 ligase ITCH binds, ubiquitinates, and downregulates tumor-surface PD-L1/L2 in MAPKi-treated human melanoma cells, thereby promoting T-cell activation. During MAPKi therapy in vivo, melanoma cell-intrinsic ITCH knockdown induced tumor-surface PD-L1, reduced intratumoral cytolytic CD8+ T cells, and accelerated acquired resistance only in immune-competent mice. Conversely, tumor cell-intrinsic ITCH overexpression reduced MAPKi-elicited PD-L1 accumulation, augmented intratumoral cytolytic CD8+ T cells, and suppressed acquired resistance in BrafV600MUT, NrasMUT, or Nf1MUT melanoma and KrasMUT-driven cancers. CD8+ T-cell depletion and tumor cell-intrinsic PD-L1 overexpression nullified the phenotype of ITCH overexpression, thereby supporting an in vivo ITCH-PD-L1-T-cell regulatory axis. Moreover, we identify a small-molecular ITCH activator that suppresses acquired MAPKi resistance in vivo. Thus, MAPKi-induced PD-L1 accelerates resistance, and a PD-L1-degrading ITCH activator prolongs antitumor response. SIGNIFICANCE: MAPKi induces tumor cell-surface PD-L1 accumulation, which promotes immune evasion and therapy resistance. ITCH degrades PD-L1, optimizing antitumor T-cell immunity. We propose degrading tumor cell-surface PD-L1 and/or activating tumor-intrinsic ITCH as strategies to overcome MAPKi resistance. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Antígeno B7-H1 , Melanoma , Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Ubiquitina-Proteína Ligases , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Melanoma/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases/genética
5.
J Biomater Appl ; 36(9): 1700-1711, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35029523

RESUMO

This study was designed to investigate the feasibility of genetic testing using circulating tumor cells (CTCs) instead of tumor tissues in lung adenocarcinoma to break through its limitation. Separation system for epithelial cell adhesion molecule (EpCAM), epidermal growth factor receptor (EGFR), and Vimentin expressing CTCs was constructed and used to capture CTCs in the blood samples of 57 patients with lung adenocarcinoma. Genetic mutations of genes involved in targeted therapies were detected by next-generation sequencing (NGS) in tissues from these patients. Blood CTC samples with the gene mutations identified by tissue-NGS were selected and corresponding gene mutations were detected by Sanger sequencing. The specificity of the CTC separation system was 95.48% and the sensitivity was 90.85%. The average number of CTCs in the blood of patients with lung adenocarcinoma was 12.47/7.5 mL. Comparison of the tissue-NGS with the CTC-Sanger sequencing showed that the consistencies of genetic mutations of EGFR (n = 24), KRAS (n = 9), TP53 (n = 19), BRAF (n = 1), ERBB2 (n = 2), and PIK3CA (n = 3) were 92.31%, 75.00%, 86.36%, 50.00%, 66.67%, and 75.00%, with an overall consistency of 84.06%. The CTC separation system established in this study shows high specificity and sensitivity. CTCs can be used as a suitable alternative to tumor tissues that are difficult to obtain in clinical practice and overcome the difficulties in tumor tissue collection, which is of significance in guiding clinical medication and individualized treatment with significant clinical application value in terms of genetic testing for targeted therapies in tumor treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Adenocarcinoma de Pulmão/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Células Neoplásicas Circulantes/metabolismo
6.
J Cell Biol ; 220(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34617965

RESUMO

The formation and plasticity of neuronal circuits relies on dynamic activity-dependent gene expression. Although recent work has revealed the identity of important transcriptional regulators and of genes that are transcribed and translated in response to activity, relatively little is known about the cell biological mechanisms by which activity alters the nuclear proteome of neurons to link neuronal stimulation to transcription. Using nucleus-specific proteomic mapping in silenced and stimulated neurons, we uncovered an understudied mechanism of nuclear proteome regulation: activity-dependent proteasome-mediated degradation. We found that the tumor suppressor protein PDCD4 undergoes rapid stimulus-induced degradation in the nucleus of neurons. We demonstrate that degradation of PDCD4 is required for normal activity-dependent transcription and that PDCD4 target genes include those encoding proteins critical for synapse formation, remodeling, and transmission. Our findings highlight the importance of the nuclear proteasome in regulating the activity-dependent nuclear proteome and point to a specific role for PDCD4 as a regulator of activity-dependent transcription in neurons.


Assuntos
Núcleo Celular/metabolismo , Neurônios/metabolismo , Proteoma/metabolismo , Transcrição Gênica , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Ascorbato Peroxidases/metabolismo , Biotinilação , Regulação da Expressão Gênica , Humanos , Espectrometria de Massas , Mutação/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteólise , Ratos Sprague-Dawley
7.
Mol Cell Proteomics ; 20: 100039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33476790

RESUMO

Deep proteome coverage in bottom-up proteomics requires peptide-level fractionation to simplify the complex peptide mixture before analysis by tandem mass spectrometry. By decreasing the number of coeluting precursor peptide ions, fractionation effectively reduces the complexity of the sample leading to higher sample coverage and reduced bias toward high-abundance precursors that are preferentially identified in data-dependent acquisition strategies. To achieve this goal, we report a bead-based off-line peptide fractionation method termed CIF or carboxylate-modified magnetic bead-based isopropanol gradient peptide fractionation. CIF is an extension of the SP3 (single-pot solid phase-enhanced sample preparation) strategy and provides an effective but complementary approach to other commonly used fractionation methods including strong cation exchange and reversed phase-based chromatography. We demonstrate that CIF is an effective offline separation strategy capable of increasing the depth of peptide analyte coverage both when used alone or as a second dimension of peptide fractionation in conjunction with high pH reversed phase. These features make it ideally suited for a wide range of proteomic applications including the affinity purification of low-abundance bait proteins.


Assuntos
2-Propanol/química , Ácidos Carboxílicos/química , Fracionamento Químico/métodos , Peptídeos/química , Proteômica/métodos , Cromatografia de Fase Reversa , Células HEK293 , Humanos , Troca Iônica , Fenômenos Magnéticos , Peptídeos/metabolismo , Proteoma
8.
Biochem Biophys Res Commun ; 503(4): 3078-3085, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126633

RESUMO

The NLRP3 inflammasome rapidly responds to many infections and stress signals and is involved in the pathogenesis of numerous inflammatory disease processes. Tannic acid plays a role in antioxidant, antifungal and antitumor activities. Here, we reported that tannic acid inhibited NLRP3 inflammasome activation by blocking NF-κB signaling to suppress IL-1ß secretion. We found that the BMDMs (bone marrow-derived macrophages cells) pre-treated with tannic acid blocked caspase-1 cleavage and inhibited IL-1ß secretion in a NLRP3-dependent manner, and suppressed NF-κB signaling activation by inhibiting NF-κB/P65 nuclear localization, suggesting that tannic acid inhibited NLRP3 inflammasome activation. These investigations revealed that tannic acid inhibited NLRP3 inflammasome activation via blocking NF-κB signaling in macrophages, providing us with evidence that tannic acid may be a potent inhibitor for NLRP3-driven diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamassomos/imunologia , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Taninos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 1/imunologia , Células Cultivadas , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/imunologia
9.
Cancer Lett ; 376(1): 22-33, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27012186

RESUMO

The epithelial-mesenchymal transition (EMT) plays an essential role in embryonic development, wound healing, tissue regeneration, organ fibrosis, and tumor progression. However, the mechanisms underlying this process are poorly understood. Many signaling pathways, including the NF-κB signaling pathway, trigger EMT during development and differentiation. In the present study, we report that N-Myc interactor (NMI) inhibits EMT progression by suppressing transcriptional activities of NF-κB in human gastric cancer cells. We show that the expression of NMI is significantly reduced in invasive gastric cancer cells and gastric cancer tissues. Overexpression of NMI inhibited cell migration and invasion, and this inhibition was enhanced after TNF-α stimulation. Tumorigenicity assay in nude mice support the notion that NMI inhibits EMT in cancer cells. Mechanistically, NMI promotes the interaction between NF-κB/p65 and histone deacetylases (HDACs) and inhibits the acetylation and transcriptional activity of p65. The expression of p65 rescues NMI-mediated inhibition of EMT and the inhibition of the acetylation of p65 mediated by NMI is HDACs-dependent. Taken together, these findings suggest that NMI can suppress tumor invasion and metastasis by inhibiting NF-κB pathways, providing an alternative mechanism for EMT inhibition in stomach neoplasm.


Assuntos
Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Gástricas/metabolismo , Fator de Transcrição RelA/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Xenoenxertos , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Interferência de RNA , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Tempo , Fator de Transcrição RelA/genética , Transcrição Gênica , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
10.
Proc Natl Acad Sci U S A ; 112(29): 9135-40, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26106155

RESUMO

Cryptochromes in different evolutionary lineages act as either photoreceptors or light-independent transcription repressors. The flavin cofactor of both types of cryptochromes can be photoreduced in vitro by electron transportation via three evolutionarily conserved tryptophan residues known as the "Trp triad." It was hypothesized that Trp triad-dependent photoreduction leads directly to photoexcitation of cryptochrome photoreceptors. We tested this hypothesis by analyzing mutations of Arabidopsis cryptochrome 1 (CRY1) altered in each of the three Trp-triad tryptophan residues (W324, W377, and W400). Surprisingly, in contrast to a previous report all photoreduction-deficient Trp-triad mutations of CRY1 remained physiologically and biochemically active in Arabidopsis plants. ATP did not enhance rapid photoreduction of the wild-type CRY1, nor did it rescue the defective photoreduction of the CRY1(W324A) and CRY1(W400F) mutants that are photophysiologically active in vivo. The lack of correlation between rapid flavin photoreduction or the effect of ATP on the rapid flavin photoreduction and the in vivo photophysiological activities of plant cryptochromes argues that the Trp triad-dependent photoreduction is not required for the function of cryptochromes and that further efforts are needed to elucidate the photoexcitation mechanism of cryptochrome photoreceptors.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Criptocromos/química , Criptocromos/metabolismo , Luz , Processos Fotoquímicos/efeitos da radiação , Triptofano/metabolismo , Trifosfato de Adenosina/farmacologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Dados de Sequência Molecular , Mutação/genética , Oxirredução/efeitos da radiação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA