Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
J Cancer ; 15(10): 3010-3023, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706909

RESUMO

Given the heterogeneity of tumors, there is an urgent need for accurate prognostic parameters in prostate cancer (PCa) patients. Lipid metabolism (LM) reprogramming and oxidative stress (OS) play a vital role in the progression of PCa. In this work, we identified five LM-OS-related genes (including ACOX2, PPRAGC1A, PTGS1, PTGS2, and HAO1) associated with the biochemical recurrence (BCR) of PCa. Subsequently, a prognostic signature was established based on these five genes. Kaplan-Meier survival estimates, receiver operating characteristic curves, and relationship analysis between risk score and clinical characters were applied to measure the robustness of the signature in an external cohort. A nomogram of risk score combined with clinical characteristics was constructed for clinical application. Functional enrichment analysis suggested that the underlying mechanism related to the signature included the calcium signaling, lipid transport, and cell cycle signaling pathways. Furthermore, WEE1 inhibitor was identified as a potential agent related to the cell cycle for high-risk patients. The mRNA expression and the prognostic value of the five genes were determined, and ACOX2 was identified as the key gene related to the prognostic signature. The protein expression of ACOX2 was measured in a prostate tissue microarray through an immunohistochemistry assay, confirming the bioinformatics results. By constructing the ACOX2-overexpressing PCa cell lines PC-3 and 22Rv1, the biological function of PCa cells was investigated. The cell viability, colony formation, migration, and invasion ability of PCa cell lines overexpressing ACOX2 were hindered. Decreased cellular lipid content and elevated cellular ROS content were observed in ACOX2-overexpressing PCa cell lines with reduced G2/M phases. In conclusion, this work presents the first prognostic signature specifically focused on LM-OS for PCa. ACOX2 could serve as a favorable indicator for the BCR in PCa. Further experiments are required to identify the potential underlying mechanism.

2.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711614

RESUMO

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Assuntos
Cobre , Doxorrubicina , Grafite , Estruturas Metalorgânicas , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Linhagem Celular Tumoral , Cobre/química , Cobre/farmacologia , Grafite/química , Grafite/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Nus , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int Immunopharmacol ; 132: 112017, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599101

RESUMO

BACKGROUND: Establishment of a reliable prognostic model and identification of novel biomarkers are urgently needed to develop precise therapy strategies for clear cell renal cell carcinoma (ccRCC). Stress response stated T cells (Tstr) are a new T-cell subtype, which are related to poor disease stage and immunotherapy response in various cancers. METHODS: 10 machine-learning algorithms and their combinations were applied in this work. A stable Tstr-related score (TCs) was constructed to predict the outcomes and PD-1 blockade treatment response in ccRCC patients. A nomogram based on TCs for personalized prediction of patient prognosis was constructed. Functional enrichment analysis and TimiGP algorithm were used to explore the underlying role of Tstr in ccRCC. The key TCs-related gene was identified by comprehensive analysis, and the bioinformatics results were verified by immunohistochemistry using a tissue microarray. RESULTS: A robust TCs was constructed and validated in four independent cohorts. TCs accurately predicted the prognosis and PD-1 blockade treatment response in ccRCC patients. The novel nomogram was able to precisely predict the outcomes of ccRCC patients. The underlying biological process of Tstr was related to acute inflammatory response and acute-phase response. Mast cells were identified to be involved in the role of Tstr as a protective factor in ccRCC. TNFS13B was shown to be the key TCs-related gene, which was an independent predictor of unfavorable prognosis. The protein expression analysis of TNFSF13B was consistent with the mRNA analysis results. High expression of TNFSF13B was associated with poor response to PD-1 blockade treatment. CONCLUSIONS: This study provides a Tstr cell-related score for predicting outcomes and PD-1 blockade therapy response in ccRCC. Tstr cells may exert their pro-tumoral role in ccRCC, acting against mast cells, in the acute inflammatory tumor microenvironment. TNFSF13B could serve as a key biomarker related to TCs.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Aprendizado de Máquina , Carcinoma de Células Renais/imunologia , Humanos , Neoplasias Renais/imunologia , Prognóstico , Masculino , Feminino , Nomogramas , Biomarcadores Tumorais/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Pessoa de Meia-Idade , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Linfócitos T/imunologia
4.
Biomater Sci ; 12(8): 2096-2107, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38441146

RESUMO

Neuroinflammation is a common feature in various neurological disorders. Understanding neuroinflammation and neuro-immune interactions is of significant importance. However, the intercellular interactions in the inflammatory model are intricate. Microfluidic chips, with their complex micrometer-scale structures and real-time observation capabilities, offer unique advantages in tackling these complexities compared to other techniques. In this study, microfluidic chip technology was used to construct a microarray physical barrier structure with 15 µm spacing, providing well-defined cell growth areas and clearly delineated interaction channels. Moreover, an innovative hydrophilic treatment process on the glass surface facilitated long-term co-culture of cells. The developed neuroinflammation model on the chip revealed that SH-SY5Y cytotoxicity was predominantly influenced by co-cultured THP-1 cells. The co-culture model fostered complex interactions that may exacerbate cytotoxicity, including irregular morphological changes of cells, cell viability reduction, THP-1 cell migration, and the release of inflammatory factors. The integration of the combinatorial cell-cell interaction chip not only offers a clear imaging detection platform but also provides diverse data on cell migration distance, migration direction, and migration angle. Furthermore, the designed ample space for cell culture, along with microscale channels with fluid characteristics, allow for the study of inflammatory factor distribution patterns on the chip, offering vital theoretical data on biological relevance that conventional experiments cannot achieve. The fabricated user-friendly, reusable, and durable co-culture chip serves as a valuable in vitro tool, providing an intuitive platform for gaining insights into the complex mechanisms underlying neuroinflammation and other interacting models.


Assuntos
Neuroblastoma , Doenças Neuroinflamatórias , Humanos , Técnicas de Cultura de Células , Técnicas de Cocultura , Comunicação Celular
5.
Anal Chem ; 96(4): 1659-1667, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38238102

RESUMO

Cancer-cell-specific fluorescent photosensitizers (PSs) are highly desired molecular tools for cancer ablation with minimal damage to normal cells. However, such PSs that can achieve cancer specification and ablation and a self-reporting manner concurrently are rarely reported and still an extremely challenging task. Herein, we have proposed a feasible strategy and conceived a series of fluorescent PSs based on simple chemical structures for identifying and killing cancer cells as well as monitoring the photodynamic therapy (PDT) process by visualizing the change of subcellular localization. All of the constructed cationic molecules could stain mitochondria in cancer cells, identify cancer cells specifically, and monitor cancer cell viability. Among these, IVP-Br has the strongest ability to produce ROS, which serves as a potent PS for specific recognition and killing of cancer cells. IVP-Br could translocate from mitochondria to the nucleolus during PDT, self-reporting the entire therapeutic process. Mechanism study confirms that IVP-Br with light irradiation causes cancer cell ablation via inducing cell cycle arrest, cell apoptosis, and autophagy. The efficient ablation of tumor through PDT induced by IVP-Br has been confirmed in the 3D tumor spheroid chip. Particularly, IVP-Br could discriminate cancer cells from white blood cells (WBCs), exhibiting great potential to identify circulating tumor cells (CTCs).


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Apoptose , Mitocôndrias/metabolismo , Corantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Cell Death Dis ; 15(1): 64, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233415

RESUMO

Renal cell carcinoma (RCC) is one of the three major malignant tumors of the urinary system and originates from proximal tubular epithelial cells. Clear cell renal cell carcinoma (ccRCC) accounts for approximately 80% of RCC cases and is recognized as a metabolic disease driven by genetic mutations and epigenetic alterations. Through bioinformatic analysis, we found that FK506 binding protein 10 (FKBP10) may play an essential role in hypoxia and glycolysis pathways in ccRCC progression. Functionally, FKBP10 promotes the proliferation and metastasis of ccRCC in vivo and in vitro depending on its peptidyl-prolyl cis-trans isomerase (PPIase) domains. Mechanistically, FKBP10 binds directly to lactate dehydrogenase A (LDHA) through its C-terminal region, the key regulator of glycolysis, and enhances the LDHA-Y10 phosphorylation, which results in a hyperactive Warburg effect and the accumulation of histone lactylation. Moreover, HIFα negatively regulates the expression of FKBP10, and inhibition of FKBP10 enhances the antitumor effect of the HIF2α inhibitor PT2385. Therefore, our study demonstrates that FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to HIF2α blockade by facilitating LDHA phosphorylation, which may be exploited for anticancer therapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/metabolismo , Lactato Desidrogenase 5/metabolismo , Fosforilação , Linhagem Celular Tumoral , Carcinoma/genética , Neoplasias Renais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo
7.
Heliyon ; 9(11): e22302, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053876

RESUMO

Acute respiratory tract infections (ARTI) are caused by respiratory pathogens and range from asymptomatic infections to severe respiratory diseases. These diseases can be life threatening with high morbidity and mortality worldwide. Under the pandemic of coronavirus disease 2019 (COVID-19), little has been reported about the pathogen etiologies and epidemiology of patients suffering from ARTI of all age in Xiamen. Region-specific surveillance in individuals with ARTI of all ages was performed in Xiamen from January 2020 to October 2022. Here, we observed the epidemiological characteristics of thirteen pathogens within ARTI patients and further revealed the difference of that between upper respiratory tract infections (URTI) and lower respiratory tract infections (LRTI). In total 56.36 % (2358/4184) of the ARTI patients were positive for at least one respiratory pathogen. Rhinovirus (RVs, 29.22 %), influenza A (FluA, 19.59 %), respiratory syncytial virus (RSV, 18.36 %), metapneumovirus (MPV, 13.91 %), and adenovirus (ADV, 10.31 %) were the five leading respiratory pathogens. Respiratory pathogens displayed age- and season-specific patterns, even between URTI and LRTI. Compared with other groups, a higher proportion of FluA (52.17 % and 68.75 %, respectively) infection was found in the adult group and the elder group, while the lower proportion of RVs (14.11 % and 11.11 %) infection was also observed in them. Although ARTI cases circulated throughout the year, RVs, FluB, and BoV peaked in autumn, and FluA circulated more in summer. Besides, the co-infectious rate was 8.7 % with the most common for RVs. Logistic regression analyses revealed the correlations between respiratory pathogens and disease types. These results are essential for replenishing epidemiological characteristics of common respiratory pathogens that caused ARTI in Xiamen during the epidemic of COVID-19, and a better understanding of it might optimize the local prevention and clinical control.

8.
BMC Complement Med Ther ; 23(1): 430, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031104

RESUMO

PURPOSE: Neuroblastoma (NB) is the most common solid malignancy in children. Despite current intensive treatment, the long-term event-free survival rate is less than 50% in these patients. Thus, patients with NB urgently need more valid treatment strategies. Previous research has shown that STAT3 may be an effective target in high-risk NB patients. However, there are no effective inhibitors in clinical evaluation with low toxicity and few side effects. Astaxanthin is a safe and natural anticancer product. In this study, we investigated whether astaxanthin could exert antitumor effects in the SK-N-SH neuroblastoma cancer cell line. METHOD: MTT and colony formation assays were used to determine the effect of astaxanthin on the proliferation and colony formation of SK-N-SH cells. Flow cytometry assays were used to detect the apoptosis of SK-N-SH cells. The migration and invasion ability of SK-N-SH cells were detected by migration and invasion assays. Western blot and RT-PCR were used to detect the protein and mRNA levels. Animal experiments were carried out and cell apoptosis in tissues were assessed using a TUNEL assay. RESULT: We confirmed that astaxanthin repressed proliferation, clone formation ability, migration and invasion and induced apoptosis in SK-N-SH cells through the STAT3 pathway. Furthermore, the highest inhibitory effect was observed when astaxanthin was combined with si-STAT3. The reason for this may be that the combination of astaxanthin and si-STAT3 can lower STAT3 expression further than astaxanthin or si-STAT3 alone. CONCLUSION: Astaxanthin can exert anti-tumor effect on SK-N-SH cells. The inhibitory effect was the higher when astaxanthin was combined with si-STAT3.


Assuntos
Neuroblastoma , Animais , Criança , Humanos , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Apoptose , Fator de Transcrição STAT3/metabolismo
9.
Signal Transduct Target Ther ; 8(1): 303, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37582751

RESUMO

The therapeutic efficacy of metformin in prostate cancer (PCa) appears uncertain based on various clinical trials. Metformin treatment failure may be attributed to the high frequency of transcriptional dysregulation, which leads to drug resistance. However, the underlying mechanism is still unclear. In this study, we found evidences that metformin resistance in PCa cells may be linked to cell cycle reactivation. Super-enhancers (SEs), crucial regulatory elements, have been shown to be associated with drug resistance in various cancers. Our analysis of SEs in metformin-resistant (MetR) PCa cells revealed a correlation with Prostaglandin Reductase 1 (PTGR1) expression, which was identified as significantly increased in a cluster of cells with metformin resistance through single-cell transcriptome sequencing. Our functional experiments showed that PTGR1 overexpression accelerated cell cycle progression by promoting progression from the G0/G1 to the S and G2/M phases, resulting in reduced sensitivity to metformin. Additionally, we identified key transcription factors that significantly increase PTGR1 expression, such as SRF and RUNX3, providing potential new targets to address metformin resistance in PCa. In conclusion, our study sheds new light on the cellular mechanism underlying metformin resistance and the regulation of the SE-TFs-PTGR1 axis, offering potential avenues to enhance metformin's therapeutic efficacy in PCa.


Assuntos
Metformina , Neoplasias da Próstata , Masculino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Fatores de Transcrição , Ciclo Celular
10.
Molecules ; 28(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570729

RESUMO

Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Camundongos , Masculino , Animais , Níquel/toxicidade , Endorribonucleases , Proteínas Serina-Treonina Quinases , Nanopartículas/toxicidade , Metabolismo dos Lipídeos , Fígado/patologia , Triglicerídeos/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL
11.
Front Oncol ; 13: 1202151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496661

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is a malignant disease containing tumor-infiltrating lymphocytes. Reactive oxygen species (ROS) are present in the tumor microenvironment and are strongly associated with cancer development. Nevertheless, the role of ROS-related genes in ccRCC remains unclear. Methods: We describe the expression patterns of ROS-related genes in ccRCC from The Cancer Genome Atlas and their alterations in genetics and transcription. An ROS-related gene signature was constructed and verified in three datasets and immunohistochemical staining (IHC) analysis. The immune characteristics of the two risk groups divided by the signature were clarified. The sensitivity to immunotherapy and targeted therapy was investigated. Results: Our signature was constructed on the basis of glutamate-cysteine ligase modifier subunit (GCLM), interaction protein for cytohesin exchange factors 1 (ICEF1), methionine sulfoxide reductase A (MsrA), and strawberry notch homolog 2 (SBNO2) genes. More importantly, protein expression levels of GCLM, MsrA, and SBNO2 were detected by IHC in our own ccRCC samples. The high-risk group of patients with ccRCC suffered lower overall survival rates. As an independent predictor of prognosis, our signature exhibited a strong association with clinicopathological features. An accurate nomogram for improving the clinical applicability of our signature was constructed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses showed that the signature was closely related to immune response, immune activation, and immune pathways. The comprehensive results revealed that the high-risk group was associated with high infiltration of regulatory T cells and CD8+ T cells and more benefited from targeted therapy. In addition, immunotherapy had better therapeutic effects in the high-risk group. Conclusion: Our signature paved the way for assessing prognosis and developing more effective strategies of immunotherapy and targeted therapy in ccRCC.

12.
Int J Radiat Biol ; 99(12): 1830-1840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37436484

RESUMO

PURPOSE: Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS: we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS: We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION: Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.


Assuntos
Exossomos , Neuroblastoma , Humanos , Astrócitos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Neurônios/metabolismo , Exossomos/metabolismo
13.
Mol Neurobiol ; 60(10): 5642-5654, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37329382

RESUMO

Depression is one of the early and most persistent non-motor symptoms of Parkinson's disease (PD), which remains ignored, resulting in the underdiagnosis of PD. Unfortunately, scarce studies and the non-availability of diagnostic strategies cause countless complications, highlighting the need for appropriate diagnostic biomarkers. Recently, brain-enriched miRNAs regulating vital neurological functions have been proposed as potent biomarkers for therapeutic strategies. Therefore, the present study is aimed to identify the brain-enriched miR-218-5p and miR-320-5p in the serum of the Chinese depressed PD patients (n = 51) than healthy controls (n = 51) to identify their potency as biomarkers. For this purpose, depressive PD patients were recruited based on HAMA and HAMD scores and miR-218-5p and miR-320-5p and IL-6, and S100B levels were analyzed using real-time PCR (qRT-PCR) and ELISA assay, respectively. In silico analysis was performed to identify key biological pathways and hub genes involved in the psychopathology of depression in PD. Here, we found significantly downregulated miR-218-5p and miR-320-5p following higher levels of IL-6 and S100B in depressed PD patients than in control (p < 0.05). The correlation analysis revealed that both miRNAs were negatively correlated with HAMA and HAMD, and IL-6 scores, along with a positive correlation with PD duration and LEDD medication. ROC analysis showed AUC above 75% in both miRNAs in depressed PD patients, and in silico analysis revealed that both miRNA's targets regulate key neurological pathways such as axon guidance, dopaminergic synapse, and circadian rhythm. Additional analysis revealed PIK3R1, ATRX, BM1, PCDHA10, XRCC5, PPP1CB, MLLT3, CBL, PCDHA4, PLCG1, YWHAZ, CDH2, AGO3, PCDHA3, and PCDHA11 as hub-genes in PPI network. In summary, our findings show that miR-218-5p and miR-320-5p can be utilized as future biomarkers for depression in PD patients, which may aid in the early diagnosis and treatment of Parkinson's disease.


Assuntos
Transtorno Depressivo Maior , MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Transtorno Depressivo Maior/genética , Interleucina-6 , MicroRNAs/genética , Biomarcadores
14.
Front Endocrinol (Lausanne) ; 14: 1148898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008945

RESUMO

Background: Enzalutamide, as a second-generation endocrine therapy drug for prostate cancer (PCa), is prominent representative among the synthetic androgen receptor antagonists. Currently, there is lack of enzalutamide-induced signature (ENZ-sig) for predicting progression and relapse-free survival (RFS) in PCa. Methods: Enzalutamide-induced candidate markers were derived from single-cell RNA sequencing analysis integrating three enzalutamide-stimulated models (0-, 48-, and 168-h enzalutamide stimulation). ENZ-sig was constructed on the basis of candidate genes that were associated with RFS in The Cancer Genome Atlas leveraging least absolute shrinkage and selection operator method. The ENZ-sig was further validated in GSE70768, GSE94767, E-MTAB-6128, DFKZ, GSE21034, and GSE70769 datasets. Biological enrichment analysis was used to discover the underlying mechanism between high ENZ-sig and low ENZ-sig in single-cell RNA sequencing and bulk RNA sequencing. Results: We identified a heterogenous subgroup that induced by enzalutamide stimulation and found 53 enzalutamide-induced candidate markers that are related to trajectory progression and enzalutamide-stimulated. The candidate genes were further narrowed down into 10 genes that are related to RFS in PCa. A 10-gene prognostic model (ENZ-sig)-IFRD1, COL5A2, TUBA1A, CFAP69, TMEM388, ACPP, MANEA, FOSB, SH3BGRL, and ST7-was constructed for the prediction of RFS in PCa. The effective and robust predictability of ENZ-sig was verified in six independent datasets. Biological enrichment analysis revealed that differentially expressed genes in high ENZ-sig were more activated in cell cycle-related pathway. High-ENZ-sig patients were more sensitive to cell cycle-targeted drugs (MK-1775, AZD7762, and MK-8776) than low-ENZ-sig patients in PCa. Conclusions: Our results provided evidence and insight on the potential utility of ENZ-sig in PCa prognosis and combination therapy strategy of enzalutamide and cell cycle-targeted compounds in treating PCa.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Antineoplásicos/uso terapêutico , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/tratamento farmacológico , Proteínas
15.
Talanta ; 260: 124574, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119799

RESUMO

Glycated albumin (GA), which represents the global glycation level of albumin, has emerged as a biomarker for diagnosing prediabetes and diabetes. In our previous study, we developed a peptide-based strategy and found three putative peptide biomarkers from the tryptic peptides of GA to diagnose type 2 diabetes mellitus (T2DM). However, the trypsin cleavage sites at the carboxyl side of lysine (K) and arginine (R) are consistent with the nonenzymatic glycation modification site residues, which considerably increases the number of missed cleavage sites and half-cleaved peptides. To solve this problem, the endoproteinase Glu-C was used to digest GA from human serum to screen putative peptides to diagnose T2DM. In the discovery phase, we found eighteen and fifteen glucose-sensitive peptides from purified albumin and human serum incubated with 13C glucose in vitro, respectively. In the validation phase, eight glucose-sensitive peptides were screened and validated in 72 clinical samples (28 healthy controls and 44 patients with diabetes) using label-free LC-ESI-MRM. Three putative sensitive peptides (VAHRFKDLGEE, FKPLVEEPQNLIKQNCE and NQDSISSKLKE) from albumin exhibited good specificity and sensitivity based on receiver operating characteristic analysis. In summary, three peptides were found as promising biomarkers for the diagnosis and assessment of T2DM based on mass spectrometry.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Albumina Sérica Humana , Glucose , Peptídeos/química , Albumina Sérica/química , Biomarcadores
16.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36982513

RESUMO

The drug efflux transporter permeability glycoprotein (P-gp) plays an important role in oral drug absorption and distribution. Under microgravity (MG), the changes in P-gp efflux function may alter the efficacy of oral drugs or lead to unexpected effects. Oral drugs are currently used to protect and treat multisystem physiological damage caused by MG; whether P-gp efflux function changes under MG remains unclear. This study aimed to investigate the alteration of P-gp efflux function, expression, and potential signaling pathway in rats and cells under different simulated MG (SMG) duration. The altered P-gp efflux function was verified by the in vivo intestinal perfusion and the brain distribution of P-gp substrate drugs. Results showed that the efflux function of P-gp was inhibited in the 7 and 21 day SMG-treated rat intestine and brain and 72 h SMG-treated human colon adenocarcinoma cells and human cerebral microvascular endothelial cells. P-gp protein and gene expression levels were continually down-regulated in rat intestine and up-regulated in rat brain by SMG. P-gp expression was regulated by the Wnt/ß-catenin signaling pathway under SMG, verified by a pathway-specific agonist and inhibitor. The elevated intestinal absorption and brain distribution of acetaminophen levels also confirmed the inhibited P-gp efflux function in rat intestine and brain under SMG. This study revealed that SMG alters the efflux function of P-gp and regulates the Wnt/ß-catenin signaling pathway in the intestine and the brain. These findings may be helpful in guiding the use of P-gp substrate drugs during spaceflight.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Ausência de Peso , Ratos , Humanos , Animais , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Via de Sinalização Wnt , Células Endoteliais/metabolismo , Intestinos , Encéfalo/metabolismo
17.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768819

RESUMO

As an energy storage technology, supercapacitors (SCs) have become an important part of many electronic systems because of their high-power density, long cycle life, and maintenance-free characteristics. However, the widespread development and use of electronics, including SCs, have led to the generation of a large amount of e-waste. In addition, achieving compatibility between stability and biodegradability has been a prominent challenge for implantable electronics. Therefore, environmentally friendly SCs based on polypyrrole (PPy)-stabilized polypeptide (FF) are demonstrated in this study. The fully degradable SC has a layer-by-layer structure, including polylactic acid/chitosan (PLA-C) support layers, current collectors (Mg), FF/PPy composite layers, and a polyvinyl alcohol/phosphate buffer solution (PVA/PBS) hydrogel. It has the advantages of being light, thin, flexible, and biocompatible. After 5000 cycles in air, the capacitance retention remains at up to 94.7%. The device could stably operate for 7 days in a liquid environment and completely degrade in vitro within 90 days without any adverse effect on the environment. This work has important implications for eco-friendly electronics and will have a significant impact on the implantable biomedical electronics.


Assuntos
Polímeros , Pirróis , Álcool de Polivinil , Peptídeos
18.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36835077

RESUMO

The progress of space science and technology has ushered in a new era for humanity's exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which involves multiple pathophysiological effects on the human body as well on tissues and organs. It has been an important research topic to study the molecular mechanism of body damage and further explore countermeasures against the physiological and pathological changes caused by the space environment. In this study, we used the rat model to study the biological effects of the tissue damage and related molecular pathway under either simulated microgravity or heavy ion radiation or combined stimulation. Our study disclosed that ureaplasma-sensitive amino oxidase (SSAO) upregulation is closely related to the systematic inflammatory response (IL-6, TNF-α) in rats under a simulated aerospace environment. In particular, the space environment leads to significant changes in the level of inflammatory genes in heart tissues, thus altering the expression and activity of SSAO and causing inflammatory responses. The detailed molecular mechanisms have been further validated in the genetic engineering cell line model. Overall, this work clearly shows the biological implication of SSAO upregulation in microgravity and radiation-mediated inflammatory response, providing a scientific basis or potential target for further in-depth investigation of the pathological damage and protection strategy under a space environment.


Assuntos
Amina Oxidase (contendo Cobre) , Síndrome de Resposta Inflamatória Sistêmica , Animais , Ratos , Amina Oxidase (contendo Cobre)/metabolismo , Voo Espacial , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Ausência de Peso/efeitos adversos
19.
J Biol Chem ; 299(1): 102720, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410440

RESUMO

Cancer cells, including those of prostate cancer (PCa), often hijack intrinsic cell signaling to reprogram their metabolism. Part of this reprogramming includes the activation of de novo synthesis of fatty acids that not only serve as building blocks for membrane synthesis but also as energy sources for cell proliferation. However, how de novo fatty acid synthesis contributes to PCa progression is still poorly understood. Herein, by mining public datasets, we discovered that the expression of acetyl-CoA carboxylase alpha (ACACA), which encodes acetyl-CoA carboxylase 1 (ACC1), was highly expressed in human PCa. In addition, patients with high ACACA expression had a short disease-free survival time. We also reported that depletion of ACACA reduced de novo fatty acid synthesis and PI3K/AKT signaling in the human castration-resistant PCa (CRPC) cell lines DU145 and PC3. Furthermore, depletion of ACACA downregulates mitochondrial beta-oxidation, resulting in mitochondrial dysfunction, a reduction in ATP production, an imbalanced NADP+/NADPhydrogen(H) ratio, increased reactive oxygen species, and therefore apoptosis. Reduced exogenous fatty acids by depleting lipid or lowering serum supplementation exacerbated both shRNA depletion and pharmacological inhibition of ACACA-induced apoptosis in vitro. Collectively, our results suggest that inhibition of ectopic ACACA, together with suppression of exogenous fatty acid uptake, can be a novel strategy for treating currently incurable CRPC.


Assuntos
Acetil-CoA Carboxilase , Ácidos Graxos , Mitocôndrias , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/genética , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral
20.
Small ; 19(2): e2205024, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398604

RESUMO

Mono-chemotherapy has significant side effects and unsatisfactory efficacy, limiting its clinical application. Therefore, a combination of multiple treatments is becoming more common in oncotherapy. Chemotherapy combined with the induction of ferroptosis is a potential new oncotherapy. Furthermore, polymeric nanoparticles (NPs) can improve the antitumor efficacy and decrease the toxicity of drugs. Herein, a polymeric NP, mPEG-b-PPLGFc@Dox, is synthesized to decrease the toxicity of doxorubicin (Dox) and enhance the efficacy of chemotherapy by combining it with the induction of ferroptosis. First, mPEG-b-PPLGFc@Dox is oxidized by endogenous H2 O2 and releases Dox, which leads to an increase of H2 O2 by breaking the redox balance. The Fe(II) group of ferrocene converts H2 O2 into ·OH, inducing subsequent ferroptosis. Furthermore, glutathione peroxidase 4, a biomarker of ferroptosis, is suppressed and the lipid peroxidation level is elevated in cells incubated with mPEG-b-PPLGFc@Dox compared to those treated with Dox alone, indicating ferroptosis induction by mPEG-b-PPLGFc@Dox. In vivo, the antitumor efficacy of mPEG-b-PPLGFc@Dox is higher than that of free Dox. Moreover, the loss of body weight in mice treated mPEG-b-PPLGFc@Dox is lower than in those treated with free Dox, indicating that mPEG-b-PPLGFc@Dox is less toxic than free Dox. In conclusion, mPEG-b-PPLGFc@Dox not only has higher antitumor efficacy but it reduces the damage to normal tissue.


Assuntos
Ferroptose , Nanopartículas , Camundongos , Animais , Metalocenos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Polietilenoglicóis , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA