Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biosci Rep ; 39(3)2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30808715

RESUMO

Background: Intracranial aneurysm (IA) is a critical acquired cerebrovascular disease that may cause subarachnoid hemorrhage, and nuclear factor-κB (NF-κB)-mediated inflammation is involved in the pathogenesis of IA. Adenomatous polyposis coli (Apc) gene is a tumor suppressor gene associated with both familial and sporadic cancer. Herein, the purpose of our study is to validate effect of Apc gene on IA formation and rupture by regulating the NF-κB signaling pathway mediated inflammatory response. Methods: We collected IA specimens (from incarceration of IA) and normal cerebral arteries (from surgery of traumatic brain injury) to examine expression of Apc and the NF-κB signaling pathway related factors (NF-κB p65 and IκBα). ELISA was used to determine levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß (IL-1ß), and IL-6. IA model was established in rats, and Apc-siRNA was treated to verify effect of Apc on IA formation and rupture. Next, regulation of Apc on the NF-κB signaling pathway was investigated. Results: Reduced expression of Apc and IκBα, and increased expression of NF-κB p65 were found in IA tissues. MCP-1, TNF-α, IL-1ß, and IL-6 exhibited higher levels in unruptured and ruptured IA, which suggested facilitated inflammatory responses. In addition, the IA rats injected with Apc-siRNA showed further enhanced activation of NF-κB signaling pathway, and up-regulated levels of MCP-1, TNF-α, IL-1ß, IL-6, MMP-2, and MMP-9 as well as extent of p65 phosphorylation in IA. Conclusion: Above all, Apc has the potential role to attenuate IA formation and rupture by inhibiting inflammatory response through repressing the activation of the NF-κB signaling pathway.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Citocinas/genética , Aneurisma Intracraniano/genética , NF-kappa B/genética , Ruptura Espontânea/genética , Transdução de Sinais/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Adulto , Idoso , Animais , Citocinas/metabolismo , Feminino , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Aneurisma Intracraniano/metabolismo , Aneurisma Intracraniano/patologia , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Ruptura Espontânea/metabolismo , Adulto Jovem
2.
Biomed Res Int ; 2017: 2957538, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28127553

RESUMO

Acetylation or deacetylation of chromatin proteins and transcription factors is part of a complex signaling system that is involved in the control of neurological disorders. Recent studies have demonstrated that histone deacetylases (HDACs) exert protective effects in attenuating neuronal injury after ischemic insults. Class IIa HDAC4 is highly expressed in the brain, and neuronal activity depends on the nucleocytoplasmic shuttling of HDAC4. However, little is known about HDAC4 and its roles in ischemic stroke. In this study, we report that phosphorylation of HDAC4 was remarkably upregulated after stroke and blockade of HDAC4 phosphorylation with GÖ6976 repressed stroke-induced angiogenesis. Phosphorylation of HDAC4 was also increased in endothelial cells hypoxia model and suppression of HDAC4 phosphorylation inhibited the tube formation and migration of endothelial cells in vitro. Furthermore, in addition to the inhibition of angiogenesis, blockade of HDAC4 phosphorylation suppressed the expression of genes downstream of HIF-VEGF signaling in vitro and in vivo. These data indicate that phosphorylated HDAC4 may serve as an important regulator in stroke-induced angiogenesis. The protective mechanism of phosphorylated HDAC4 is associated with HIF-VEGF signaling, implicating a novel therapeutic target in stroke.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Histona Desacetilases/metabolismo , Neovascularização Fisiológica , Acidente Vascular Cerebral/metabolismo , Animais , Carbazóis/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Stem Cell Res Ther ; 6: 10, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-26268554

RESUMO

INTRODUCTION: 'Patient-specific' induced pluripotent stem cells (iPSCs) are attractive because they can generate abundant cells without the risk of immune rejection for cell therapy. Studies have shown that iPSC-derived mesenchymal stem cells (iMSCs) possess powerful proliferation, differentiation, and therapeutic effects. Recently, most studies indicate that stem cells exert their therapeutic effect mainly through a paracrine mechanism other than transdifferentiation, and exosomes have emerged as an important paracrine factor for stem cells to reprogram injured cells. The objective of this study was to evaluate whether exosomes derived from iMSCs (iMSCs-Exo) possess the ability to attenuate limb ischemia and promote angiogenesis after transplantation into limbs of mice with femoral artery excision. METHODS: Human iPSCs (iPS-S-01, C1P33, and PCKDSF001C1) were used to differentiate into iMSCs in a modified one-step method. iMSCs were characterized by flow cytometry and multipotent differentiation potential analysis. Ultrafiltration combined with a purification method was used to isolate iMSCs-Exo, and transmission electron microscopy and Western blotting were used to identify iMSCs-Exo. After establishment of mouse hind-limb ischemia with excision of femoral artery and iMSCs-Exo injection, blood perfusion was monitored at days 0, 7, 14, and 21; microvessel density in ischemic muscle was also analyzed. In vitro migration, proliferation, and tube formation experiments were used to analyze the ability of pro-angiogenesis in iMSCs-Exo, and quantitative reverse-transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay were used to identify expression levels of angiogenesis-related molecules in human umbilical vein endothelial cells (HUVECs) after being cultured with iMSCs-Exo. RESULTS: iPSCs were efficiently induced into iMSC- with MSC-positive and -negative surface antigens and osteogenesis, adipogenesis, and chondrogenesis differentiation potential. iMSCs-Exo with a diameter of 57 ± 11 nm and expressed CD63, CD81, and CD9. Intramuscular injection of iMSCs-Exo markedly enhanced microvessel density and blood perfusion in mouse ischemic limbs, consistent with an attenuation of ischemic injury. In addition, iMSCs-Exo could activate angiogenesis-related molecule expression and promote HUVEC migration, proliferation, and tube formation. CONCLUSION: Implanted iMSCs-Exo was able to protect limbs from ischemic injury via the promotion of angiogenesis, which indicated that iMSCs-Exo may be a novel therapeutic approach in the treatment of ischemic diseases.


Assuntos
Exossomos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Isquemia/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos
4.
Tissue Eng Part A ; 20(13-14): 1794-806, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24387670

RESUMO

Stem cells in human urine have gained attention in recent years; however, urine-derived stem cells (USCs) are far from being well elucidated. In this study, we compared the biological characteristics of USCs with adipose-derived stem cells (ASCs) and investigated whether USCs could serve as a potential cell source for neural tissue engineering. USCs were isolated from voided urine with a modified culture medium. Through a series of experiments, we examined the growth rate, surface antigens, and differentiation potential of USCs, and compared them with ASCs. USCs showed robust proliferation ability. After serial propagation, USCs retained normal karyotypes. Cell surface antigen expression of USCs was similar to ASCs. With lineage-specific induction factors, USCs could differentiate toward the osteogenic, chondrogenic, adipogenic, and neurogenic lineages. To assess the ability of USCs to survive, differentiate, and migrate, they were seeded onto hydrogel scaffold and transplanted into rat brain. The results showed that USCs were able to survive in the lesion site, migrate to other areas, and express proteins that were associated with neural phenotypes. The results of our study demonstrate that USCs possess similar biological characteristics with ASCs and have multilineage differentiation potential. Moreover USCs can differentiate to neuron-like cells in rat brain. The present study shows that USCs are a promising cell source for tissue engineering and regenerative medicine.


Assuntos
Neurologia , Transplante de Células-Tronco , Células-Tronco/citologia , Urina/citologia , Tecido Adiposo/citologia , Adulto , Animais , Biomarcadores/metabolismo , Encéfalo/citologia , Diferenciação Celular , Linhagem da Célula , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Forma Celular , Sobrevivência Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Cariotipagem , Masculino , Neurônios/citologia , Neurônios/metabolismo , Ratos , Células-Tronco/metabolismo , Adulto Jovem
5.
Neurol Sci ; 35(4): 531-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24057116

RESUMO

The objective of the study was to investigate the role of neuregulin-ErbB signaling in neuropathic pain in different types of injury. Neuregulin-1(NRG-1) was injected into animals with either formalin-induced pain model or spared nerve injury (SNI) model. Formalin tests or paw withdrawal tests were performed to study the role of NRG-1 in neuropathic pain. siRNA specific to different erbB receptors were then introduced to test which specific signaling pathway was required for NRG-1 signaling in the different pain models. NRG-1 inhibits neuropathic pain after SNI in a dose-dependent manner, while NRG-1 aggravates formalin-induced neuropathic pain. ErbB2 and erbB4 receptors were activated after neuregulin administration. Knockdown of ErbB2 relieves the aggravation of NRG-1 on formalin-induced neuropathic pain, and knockdown of ErbB4 could relieve the inhibition of NRG-1 on neuropathic pain in the SNI model. NRG-1 has two distinct functions depending on the different receptor activation in different models of neuropathic pain. These novel findings may provide new therapeutic approaches for the treatment of neuropathic pain in different injury types.


Assuntos
Neuralgia/metabolismo , Neuregulina-1/fisiologia , Receptor ErbB-2/metabolismo , Animais , Formaldeído , Hiperalgesia/complicações , Hiperalgesia/metabolismo , Masculino , Neuralgia/induzido quimicamente , Neuralgia/complicações , Neuregulina-1/farmacologia , Ratos
6.
Stem Cell Res Ther ; 4(3): 73, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23769173

RESUMO

INTRODUCTION: Stroke is a major cause of permanent neurologic damage, with few effective treatments available to restore lost function. Induced pluripotent stem cells (iPSCs) have the potential to generate all cell types in vitro and can be generated from a stroke patient. Therefore, iPSCs are attractive donor sources of genetically identical "patient-specific" cells to hold promise in therapy for stroke. In the present study, we established a four-stage culture system by using serum-free medium and retinoic acid (RA) to differentiate iPSCs into neural stem cells (NSCs) effectively and stably. Our hypothesis was that iPSC-derived NSCs would survive, migrate, and differentiate in vivo, and improve neurologic function after transplantation into the brains of rats with ischemic stroke. METHODS: Human iPSCs (iPS-S-01) and human ESCs (HuES17) were used to differentiate into NSCs by using our four-stage culture system. iPSCs and differentiated NSCs were characterized by immunocytochemistry staining and reverse transcription-polymerase chain reaction (RT-PCR) analysis. After establishment of focal cerebral ischemia with occlusion of the middle cerebral artery (MCA) and cell transplantation, animals were killed at 1 week and 2 weeks to analyze survival, migration, and differentiation of implanted cells in brain tissue. Animal behavior was evaluated via rope grabbing, beam walking, and Morris water maze tests. RESULTS: iPSCs were efficiently induced into NSCs by using a newly established four-stage induction system in vitro. iPSCs expressed pluripotency-associated genes Oct4, Sox2, and Nanog before NSC differentiation. The iPSC-derived NSCs spontaneously differentiated into neurons and astrocytes, which highly express ß-tubulin and glial fibrillary acidic protein (GFAP), respectively. On transplantation into the striatum, CM-DiI labeled iPSC-derived NSCs were found to migrate into the ischemia area at 1 week and 2 weeks, and animal-function recovery was significantly improved in comparison with control groups at 3 weeks. CONCLUSIONS: The four-stage induction system is stable and effective to culture, differentiate, and induce iPSCs to NSCs by using serum-free medium combined with retinoic acid (RA). Implanted iPSC-derived NSCs were able to survive, migrate into the ischemic brain area to differentiate into mature neural cells, and seem to have potential to restore lost neurologic function from damage due to stroke in a rat model.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Infarto da Artéria Cerebral Média/terapia , Células-Tronco Neurais/transplante , Neurônios/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Atividade Motora , Proteína Homeobox Nanog , Nestina/genética , Nestina/metabolismo , Células-Tronco Neurais/citologia , Neurônios/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Tubulina (Proteína)/metabolismo
7.
Mol Cell Biochem ; 370(1-2): 45-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22833359

RESUMO

The compensatory angiogenesis that occurs after cerebral ischemia increases blood flow to the injured area and limits extension of the ischemic penumbra. In this way, it improves the local blood supply. Fostering compensatory angiogenesis is an effective treatment for ischemic cerebrovascular disease. However, angiogenesis in the adult organism is a complex, multi-step process, and the mechanisms underlying the regulation of angiogenesis are not well understood. Although Notch signaling reportedly regulates the vascularization process that occurs in ischemic tissues, little is known about the role of Notch signaling in the regulation of ischemia-induced angiogenesis after ischemic stroke. Recent research has indicated that miR-210, a hypoxia-induced microRNA, plays a crucial role in regulating the biological processes that occur in blood vessel endothelial cells under hypoxic conditions. This study was undertaken to investigate the role of miR-210 in regulating angiogenesis in response to brain ischemia injury and the role of the Notch pathway in the body's response. We found miR-210 to be significantly up-regulated in adult rat ischemic brain cortexes in which the expression of Notch1 signaling molecules was also increased. Hypoxic models of human umbilical vein endothelial cells (HUVE-12) were used to assess changes in miR-210 and Notch1 expression in endothelial cells. Results were consistent with in vivo findings. To determine the molecular mechanisms behind these phenomena, we transfected HUVE-12 cells with miR-210 recombinant lentiviral vectors. We found that miR-210 overexpression caused up-regulation of Notch1 signaling molecules and induced endothelial cells to migrate and form capillary-like structures on Matrigel. These data suggest that miR-210 is involved in the regulation of angiogenesis in response to ischemic injury to the brain. Up-regulation of miR-210 can activate the Notch signaling pathway, which may contribute to angiogenesis after cerebral ischemia.


Assuntos
Isquemia Encefálica/complicações , MicroRNAs/metabolismo , Neovascularização Patológica/etiologia , Neovascularização Patológica/genética , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Hipóxia Celular/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , MicroRNAs/genética , Microvasos/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/genética
8.
Kidney Blood Press Res ; 35(3): 182-91, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22123256

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs that regulate gene expression and function, but little is known about regulation of miRNAs in the kidneys under normal or pathologic conditions. Here, we sought to investigate the potential involvement of miRNAs in renal ischemia/reperfusion (I/R) injury and angiogenesis and to define some of the miRNAs possibly associated with renal angiogenesis. METHODS AND RESULTS: Male Balb/c mice were subjected to a standard renal I/R. CD31 immunostaining indicated a significant increase of microvessels in the ischemic region. VEGF and VEGFR2 expression were increased in renal I/R at both the mRNA and protein levels which were detected by qRT-PCR and Western blot, respectively. More importantly, 76 microRNAs exhibited more than 2-fold changes using Agilent microRNA microarray, which contains downregulation of 40 miRNAs and upregulation of 36 miRNAs. Upregulation of miR-210 was confirmed by qRT-PCR with prominent changes at 4 and 24 h after reperfusion. Furthermore, overexpression of miR-210 in HUVEC-12 cells enhances VEGF and VEGFR2 expression and promotes angiogenesis on Matrigel in vitro. CONCLUSION: These findings suggest miR-210 may be involved in targeting the VEGF signaling pathway to regulate angiogenesis after renal I/R injury, which provides novel insights into the angiogenesis mechanism of renal I/R injury.


Assuntos
MicroRNAs/biossíntese , Neovascularização Patológica/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/fisiopatologia , Distribuição Aleatória , Traumatismo por Reperfusão/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA