Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Resist Updat ; 71: 100993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639774

RESUMO

AIMS: Drivers of the drug tolerant proliferative persister (DTPP) state have not been well investigated. Histone H3 lysine-4 trimethylation (H3K4me3), an active histone mark, might enable slow cycling drug tolerant persisters (DTP) to regain proliferative capacity. This study aimed to determine H3K4me3 transcriptionally active sites identifying a key regulator of DTPPs. METHODS: Deploying a model of adaptive cancer drug tolerance, H3K4me3 ChIP-Seq data of DTPPs guided identification of top transcription factor binding motifs. These suggested involvement of O-linked N-acetylglucosamine transferase (OGT), which was confirmed by metabolomics analysis and biochemical assays. OGT impact on DTPPs and adaptive resistance was explored in vitro and in vivo. RESULTS: H3K4me3 remodeling was widespread in CPG island regions and DNA binding motifs associated with O-GlcNAc marked chromatin. Accordingly, we observed an upregulation of OGT, O-GlcNAc and its binding partner TET1 in chronically treated cancer cells. Inhibition of OGT led to loss of H3K4me3 and downregulation of genes contributing to drug resistance. Genetic ablation of OGT prevented acquired drug resistance in in vivo models. Upstream of OGT, we identified AMPK as an actionable target. AMPK activation by acetyl salicylic acid downregulated OGT with similar effects on delaying acquired resistance. CONCLUSION: Our findings uncover a fundamental mechanism of adaptive drug resistance that governs cancer cell reprogramming towards acquired drug resistance, a process that can be exploited to improve response duration and patient outcomes.


Assuntos
Proteínas Quinases Ativadas por AMP , Histonas , Humanos , Histonas/genética , Regulação para Baixo , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas
2.
Nature ; 578(7795): 437-443, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32025032

RESUMO

LGR5 marks resident adult epithelial stem cells at the gland base in the mouse pyloric stomach1, but the identity of the equivalent human stem cell population remains unknown owing to a lack of surface markers that facilitate its prospective isolation and validation. In mouse models of intestinal cancer, LGR5+ intestinal stem cells are major sources of cancer following hyperactivation of the WNT pathway2. However, the contribution of pyloric LGR5+ stem cells to gastric cancer following dysregulation of the WNT pathway-a frequent event in gastric cancer in humans3-is unknown. Here we use comparative profiling of LGR5+ stem cell populations along the mouse gastrointestinal tract to identify, and then functionally validate, the membrane protein AQP5 as a marker that enriches for mouse and human adult pyloric stem cells. We show that stem cells within the AQP5+ compartment are a source of WNT-driven, invasive gastric cancer in vivo, using newly generated Aqp5-creERT2 mouse models. Additionally, tumour-resident AQP5+ cells can selectively initiate organoid growth in vitro, which indicates that this population contains potential cancer stem cells. In humans, AQP5 is frequently expressed in primary intestinal and diffuse subtypes of gastric cancer (and in metastases of these subtypes), and often displays altered cellular localization compared with healthy tissue. These newly identified markers and mouse models will be an invaluable resource for deciphering the early formation of gastric cancer, and for isolating and characterizing human-stomach stem cells as a prerequisite for harnessing the regenerative-medicine potential of these cells in the clinic.


Assuntos
Aquaporina 5/metabolismo , Carcinogênese/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Gástricas/patologia , Estômago/patologia , Animais , Biomarcadores/metabolismo , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Piloro/patologia , Receptores Acoplados a Proteínas G/metabolismo , Via de Sinalização Wnt
3.
J Hepatol ; 72(4): 725-735, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31726117

RESUMO

BACKGROUND & AIM: Under the regulation of various oncogenic pathways, cancer cells undergo adaptive metabolic programming to maintain specific metabolic states that support their uncontrolled proliferation. As it has been difficult to directly and effectively inhibit oncogenic signaling cascades with pharmaceutical compounds, focusing on the downstream metabolic pathways that enable indefinite growth may provide therapeutic opportunities. Thus, we sought to characterize metabolic changes in hepatocellular carcinoma (HCC) development and identify metabolic targets required for tumorigenesis. METHODS: We compared gene expression profiles of Morris Hepatoma (MH3924a) and DEN (diethylnitrosamine)-induced HCC models to those of liver tissues from normal and rapidly regenerating liver models, and performed gain- and loss-of-function studies of the identified gene targets for their roles in cancer cell proliferation in vitro and in vivo. RESULTS: The proline biosynthetic enzyme PYCR1 (pyrroline-5-carboxylate reductase 1) was identified as one of the most upregulated genes in the HCC models. Knockdown of PYCR1 potently reduced cell proliferation of multiple HCC cell lines in vitro and tumor growth in vivo. Conversely, overexpression of PYCR1 enhanced the proliferation of the HCC cell lines. Importantly, PYCR1 expression was not elevated in the regenerating liver, and KD or overexpression of PYCR1 had no effect on proliferation of non-cancerous cells. Besides PYCR1, we found that additional proline biosynthetic enzymes, such as ALDH18A1, were upregulated in HCC models and also regulated HCC cell proliferation. Clinical data demonstrated that PYCR1 expression was increased in HCC, correlated with tumor grade, and was an independent predictor of clinical outcome. CONCLUSION: Enhanced expression of proline biosynthetic enzymes promotes HCC cell proliferation. Inhibition of PYCR1 or ALDH18A1 may be a novel therapeutic strategy to target HCC. LAY SUMMARY: Even with the recently approved immunotherapies against liver cancer, currently available medications show limited clinical benefits or efficacy in the majority of patients. As such, it remains a top priority to discover new targets for effective liver cancer treatment. Here, we identify a critical role for the proline biosynthetic pathway in liver cancer development, and demonstrate that targeting key proteins in the pathway, namely PYCR1 and ALDH18A1, may be a novel therapeutic strategy for liver cancer.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas/metabolismo , Prolina/biossíntese , Transdução de Sinais/genética , Aldeído Desidrogenase/deficiência , Aldeído Desidrogenase/genética , Animais , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Dietilnitrosamina/efeitos adversos , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Células HaCaT , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Pirrolina Carboxilato Redutases/deficiência , Pirrolina Carboxilato Redutases/genética , Ratos , Transcriptoma , Transfecção , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto , delta-1-Pirrolina-5-Carboxilato Redutase
4.
Sci Rep ; 8(1): 13430, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194425

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) patients suffer from chronic and repeatedly infected wounds predisposing them to the development of aggressive and life-threatening skin cancer in these areas. Vitamin D3 is an often neglected but critical factor for wound healing. Intact skin possesses the entire enzymatic machinery required to produce active 1-alpha,25-dihydroxyvitamin D3 (calcitriol), underscoring its significance to proper skin function. Injury enhances calcitriol production, inducing the expression of calcitriol target genes including the antimicrobial peptide cathelicidin (hCAP18), an essential component of the innate immune system and an important wound healing factor. We found significantly reduced hCAP18 expression in a subset of RDEB keratinocytes which could be restored by calcipotriol treatment. Reduced scratch closure in RDEB cell monolayers was enhanced up to 2-fold by calcipotriol treatment, and the secretome of calcipotriol-treated cells additionally showed increased antimicrobial activity. Calcipotriol exhibited anti-neoplastic effects, suppressing the clonogenicity and proliferation of RDEB tumor cells. The combined wound healing, anti-microbial, and anti-neoplastic effects indicate that calcipotriol may represent a vital therapeutic option for RDEB patients which we could demonstrate in a single-patient observation study.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Calcitriol/análogos & derivados , Fármacos Dermatológicos/farmacologia , Epidermólise Bolhosa/metabolismo , Queratinócitos/efeitos dos fármacos , Cicatrização , Idoso , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Calcitriol/farmacologia , Linhagem Celular , Células Cultivadas , Epidermólise Bolhosa/patologia , Humanos , Queratinócitos/metabolismo , Masculino , Catelicidinas
5.
J Invest Dermatol ; 138(2): 291-300, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28964717

RESUMO

Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease.


Assuntos
Hipopigmentação/genética , Ceratodermia Palmar e Plantar/genética , Melaninas/biossíntese , Melanócitos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Biópsia , Cisteína/genética , Análise Mutacional de DNA , Feminino , Fibroblastos , Mutação em Linhagem Germinativa , Células HEK293 , Homozigoto , Humanos , Hipopigmentação/diagnóstico , Hipopigmentação/patologia , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/patologia , Masculino , Linhagem , Diester Fosfórico Hidrolases/metabolismo , Cultura Primária de Células , Pirofosfatases/metabolismo , Índice de Gravidade de Doença , Pele/citologia , Pele/patologia , Sequenciamento do Exoma
6.
Stem Cell Reports ; 8(6): 1675-1688, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591650

RESUMO

Pluripotent stem cells have been proposed as an unlimited source of pancreatic ß cells for studying and treating diabetes. However, the long, multi-step differentiation protocols used to generate functional ß cells inevitably exhibit considerable variability, particularly when applied to pluripotent cells from diverse genetic backgrounds. We have developed culture conditions that support long-term self-renewal of human multipotent pancreatic progenitors, which are developmentally more proximal to the specialized cells of the adult pancreas. These cultured pancreatic progenitor (cPP) cells express key pancreatic transcription factors, including PDX1 and SOX9, and exhibit transcriptomes closely related to their in vivo counterparts. Upon exposure to differentiation cues, cPP cells give rise to pancreatic endocrine, acinar, and ductal lineages, indicating multilineage potency. Furthermore, cPP cells generate insulin+ ß-like cells in vitro and in vivo, suggesting that they offer a convenient alternative to pluripotent cells as a source of adult cell types for modeling pancreatic development and diabetes.


Assuntos
Autorrenovação Celular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação para Baixo , Células Alimentadoras/citologia , Células Alimentadoras/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/farmacologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Rim/metabolismo , Rim/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pâncreas/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo , Transplante Heterólogo
7.
Nat Cell Biol ; 19(7): 774-786, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581476

RESUMO

The daily renewal of the corpus epithelium is fuelled by adult stem cells residing within tubular glands, but the identity of these stem cells remains controversial. Lgr5 marks homeostatic stem cells and 'reserve' stem cells in multiple tissues. Here, we report Lgr5 expression in a subpopulation of chief cells in mouse and human corpus glands. Using a non-variegated Lgr5-2A-CreERT2 mouse model, we show by lineage tracing that Lgr5-expressing chief cells do not behave as corpus stem cells during homeostasis, but are recruited to function as stem cells to effect epithelial renewal following injury by activating Wnt signalling. Ablation of Lgr5+ cells severely impairs epithelial homeostasis in the corpus, indicating an essential role for these Lgr5+ cells in maintaining the homeostatic stem cell pool. We additionally define Lgr5+ chief cells as a major cell-of-origin of gastric cancer. These findings reveal clinically relevant insights into homeostasis, repair and cancer in the corpus.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Celulas Principais Gástricas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células Parietais Gástricas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regeneração , Neoplasias Gástricas/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/patologia , Regulação da Expressão Gênica , Genótipo , Humanos , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Organoides , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/patologia , Fenótipo , Regeneração/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Tamoxifeno/toxicidade , Técnicas de Cultura de Tecidos , Via de Sinalização Wnt
8.
Genes Chromosomes Cancer ; 55(1): 45-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26391330

RESUMO

Lymph node (LN) metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC) patients. However, in approximately one third of OSCC patients nodal metastases remain undetected, and thus are not adequately treated. Therefore, clinical assessment of LN metastasis needs to be improved. The purpose of this study was to identify DNA methylation biomarkers to predict LN metastases in OSCC. Genome wide methylation assessment was performed on six OSCC with (N+) and six without LN metastases (N0). Differentially methylated sequences were selected based on the likelihood of differential methylation and validated using an independent OSCC cohort as well as OSCC from The Cancer Genome Atlas (TCGA). Expression of WISP1 using immunohistochemistry was analyzed on a large OSCC cohort (n = 204). MethylCap-Seq analysis revealed 268 differentially methylated markers. WISP1 was the highest ranking annotated gene that showed hypomethylation in the N+ group. Bisulfite pyrosequencing confirmed significant hypomethylation within the WISP1 promoter region in N+ OSCC (P = 0.03) and showed an association between WISP1 hypomethylation and high WISP1 expression (P = 0.01). Both these results were confirmed using 148 OSCC retrieved from the TCGA database. In a large OSCC cohort, high WISP1 expression was associated with LN metastasis (P = 0.05), disease-specific survival (P = 0.022), and regional disease-free survival (P = 0.027). These data suggest that WISP1 expression is regulated by methylation and WISP1 hypomethylation contributes to LN metastasis in OSCC. WISP1 is a potential biomarker to predict the presence of LN metastases.


Assuntos
Proteínas de Sinalização Intercelular CCN/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Metilação de DNA , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteínas Proto-Oncogênicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas de Sinalização Intercelular CCN/metabolismo , Carcinoma de Células Escamosas/metabolismo , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Prognóstico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Análise de Sequência de DNA , Análise de Sobrevida
10.
Environ Mol Mutagen ; 55(3): 155-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24327356

RESUMO

Epigenetics refers to the collection of heritable features that modulate the genome-environment interaction without being encoded in the actual DNA sequence. While being mitotically and sometimes even meiotically transmitted, epigenetic traits often demonstrate extensive flexibility. This allows cells to acquire diverse gene expression patterns during differentiation, but also to adapt to a changing environment. However, epigenetic alterations are not always beneficial to the organism, as they are, for example, frequently identified in human diseases such as cancer. Accurate and cost-efficient genome-scale profiling of epigenetic features is thus of major importance to pinpoint these "epimutations," for example, to monitor the epigenetic impact of environmental exposure. Over the last decade, the field of epigenetics has been revolutionized by several innovative "epigenomics" technologies exactly addressing this need. In this review, we discuss and compare widely used next-generation methods to assess DNA methylation and hydroxymethylation, noncoding RNA expression, histone modifications, and nucleosome positioning. Although recent methods are typically based on "second-generation" sequencing, we also pay attention to still commonly used array- and PCR-based methods, and look forward to the additional advantages of single-molecule sequencing. As the current bottleneck in epigenomics research is the analysis rather than generation of data, the basic difficulties and problem-solving strategies regarding data preprocessing and statistical analysis are introduced for the different technologies. Finally, we also consider the complications associated with epigenomic studies of species with yet unsequenced genomes and possible solutions.


Assuntos
Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica/métodos , Histonas/química , Nucleossomos/química , Animais , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Metilação de DNA , Exposição Ambiental , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase/métodos , RNA não Traduzido/genética , Análise de Sequência de DNA/métodos , Sulfitos/química
11.
Allergy Asthma Clin Immunol ; 9(1): 48, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24341752

RESUMO

Staphylococcal enterotoxins may influence the pro-inflammatory pattern of chronic sinus diseases via epigenetic events. This work intended to investigate the potential of staphylococcal enterotoxin B (SEB) to induce changes in the DNA methylation pattern. Nasal polyp tissue explants were cultured in the presence and absence of SEB; genomic DNA was then isolated and used for whole genome methylation analysis. Results showed that SEB stimulation altered the methylation pattern of gene regions when compared with non stimulated tissue. Data enrichment analysis highlighted two genes: the IKBKB and STAT-5B, both playing a crucial role in T- cell maturation/activation and immune response.

12.
PLoS One ; 8(3): e59068, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554971

RESUMO

DNA-methylation is an important epigenetic feature in health and disease. Methylated sequence capturing by Methyl Binding Domain (MBD) based enrichment followed by second-generation sequencing provides the best combination of sensitivity and cost-efficiency for genome-wide DNA-methylation profiling. However, existing implementations are numerous, and quality control and optimization require expensive external validation. Therefore, this study has two aims: 1) to identify a best performing kit for MBD-based enrichment using independent validation data, and 2) to evaluate whether quality evaluation can also be performed solely based on the characteristics of the generated sequences. Five commercially available kits for MBD enrichment were combined with Illumina GAIIx sequencing for three cell lines (HCT15, DU145, PC3). Reduced representation bisulfite sequencing data (all three cell lines) and publicly available Illumina Infinium BeadChip data (DU145 and PC3) were used for benchmarking. Consistent large-scale differences in yield, sensitivity and specificity between the different kits could be identified, with Diagenode's MethylCap kit as overall best performing kit under the tested conditions. This kit could also be identified with the Fragment CpG-plot, which summarizes the CpG content of the captured fragments, implying that the latter can be used as a tool to monitor data quality. In conclusion, there are major quality differences between kits for MBD-based capturing of methylated DNA, with the MethylCap kit performing best under the used settings. The Fragment CpG-plot is able to monitor data quality based on inherent sequence data characteristics, and is therefore a cost-efficient tool for experimental optimization, but also to monitor quality throughout routine applications.


Assuntos
Metilação de DNA , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Linhagem Celular Tumoral , Ilhas de CpG , Epigenômica/métodos , Loci Gênicos , Humanos , Kit de Reagentes para Diagnóstico/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
New Phytol ; 196(3): 887-900, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22985291

RESUMO

Rice is one of the most important staple crops worldwide, but its yield is compromised by different pathogens, including plant-parasitic nematodes. In this study we have characterized specific and general responses of rice (Oryza sativa) roots challenged with two endoparasitic nematodes with very different modes of action. Local transcriptional changes in rice roots upon root knot (Meloidogyne graminicola) and root rot nematode (RRN, Hirschmanniella oryzae) infection were studied at two time points (3 and 7 d after infection, dai), using mRNA-seq. Our results confirm that root knot nematodes (RKNs), which feed as sedentary endoparasites, stimulate metabolic pathways in the root, and enhance nutrient transport towards the induced root gall. The migratory RRNs, on the other hand, induce programmed cell death and oxidative stress, and obstruct the normal metabolic activity of the root. While RRN infection causes up-regulation of biotic stress-related genes early in the infection, the sedentary RKNs suppress the local defense pathways (e.g. salicylic acid and ethylene pathways). Interestingly, hormone pathways mainly involved in plant development were strongly induced (gibberellin) or repressed (cytokinin) at 3 dai. These results uncover previously unrecognized nematode-induced expression profiles related to their specific infection strategy.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/parasitologia , Raízes de Plantas/parasitologia , Transcrição Gênica , Tylenchoidea/patogenicidade , Animais , Morte Celular , Parede Celular/genética , Parede Celular/metabolismo , Comportamento Alimentar , Perfilação da Expressão Gênica , Genes de Plantas , Células Gigantes/metabolismo , Interações Hospedeiro-Parasita , Oryza/genética , Raízes de Plantas/genética , Tumores de Planta/parasitologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/análise , RNA de Plantas/genética , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Tempo , Transcriptoma , Tylenchoidea/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA