RESUMO
BACKGROUND/OBJECTIVES: Anti-Müllerian hormone (AMH) signaling is critical for sexual differentiation and gonadal function. AMH receptor type 2 (AMHR2) is expressed in extragonadal sites such as brain, and pituitary and emerging evidence indicates that AMH biological action is much broader than initially thought. We recently reported that AMH signaling enhances follicle-stimulating hormone synthesis in pituitary gonadotrope cells. However, mechanisms regulating AMHR2 expression in these extragonadal sites remain to be explored. METHOD/RESULTS: Here, we demonstrated in perifused murine LßT2 gonadotrope cells that Amhr2 expression is differentially regulated by GnRH pulse frequency with an induction under high GnRH pulsatility. Furthermore, we showed that GnRH transactivates the human AMHR2 promoter in LßT2 cells. Successive deletions of the promoter revealed the importance of a short proximal region (-53/-37 bp) containing an Egr1 binding site. Using site-directed mutagenesis of Egr1 motif and siRNA mediated-knockdown of Egr1, we demonstrated that Egr1 mediates basal and GnRH-dependent activity of the promoter, identifying Egr1 as a new transcription factor controlling hAMHR2 expression. We also showed that SF1 and ß-catenin are required for basal promoter activity and demonstrated that both factors contribute to the GnRH stimulatory effect, independently of their respective binding sites. Furthermore, using a constitutively active mutant of FOXO1, we identified FOXO1 as a negative regulator of basal and GnRH-dependent AMHR2 expression in gonadotrope cells. CONCLUSIONS: This study identifies GnRH as a regulator of human AMHR2 expression, further highlighting the importance of AMH signaling in the regulation of gonadotrope function.
Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Proteína Forkhead Box O1/metabolismo , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Animais , Linhagem Celular , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Gonadotrofos/metabolismo , Camundongos , Regiões Promotoras Genéticas , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genéticaRESUMO
Reproductive function is under the control of the neurohormone GnRH, which activates a G-protein-coupled receptor (GnRHR) expressed in pituitary gonadotrope cells. GnRHR activates a complex signaling network to regulate synthesis and secretion of the two gonadotropin hormones, luteinizing hormone and follicle-stimulating hormone, both regulating gametogenesis and steroidogenesis in gonads. Recently, in an attempt to identify the mechanisms underlying GnRHR signaling plasticity, we identified the first interacting partner of GnRHR, the proto-oncogene SET. We showed that SET binds to intracellular domains of GnRHR to enhance its coupling to cAMP pathway in αT3-1 gonadotrope cells. Here, we demonstrate that SET protein is rapidly regulated by GnRH, which increases SET phosphorylation state and decreases dose-dependently SET protein level. Our results highlight a post-translational regulation of SET protein involving the proteasome pathway. We determined that SET phosphorylation upon GnRH stimulation is mediated by PKC and that PKC mediates GnRH-induced SET down-regulation. Phosphorylation on serine 9 targets SET for degradation into the proteasome. Furthermore, a non-phosphorylatable SET mutant on serine 9 is resistant to GnRH-induced down-regulation. Altogether, these data suggest that GnRH-induced SET phosphorylation on serine 9 mediates SET protein down-regulation through the proteasome pathway. Noteworthy, SET down-regulation was also observed in response to pulsatile GnRH stimulation in LßT2 gonadotrope cells as well as in vivo in prepubertal female mice supporting its physiological relevance. In conclusion, this study highlights a regulation of SET protein by the neurohormone GnRH and identifies some of the mechanisms involved.
Assuntos
Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Proteínas Oncogênicas/genética , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Gonadotrofos/metabolismo , Chaperonas de Histonas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/metabolismo , Fosforilação , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proto-Oncogene MasRESUMO
Secretion of 17-ß-estradiol (E2) by human granulosa cells can be disrupted by various environmental toxicants. In the current study, we investigated whether carbon black nanoparticles (CB NPs) affect the steroidogenic activity of cultured human granulosa cells. The human granulosa cell line KGN and granulosa cells from patients undergoing in vitro fertilization were treated with increasing concentrations of CB NPs (1 to 100 µg/mL) together or not with follicle-stimulating hormone (FSH). We observed that CB NPs are internalized in KGN cells without affecting cell viability. CB NPs could be localized in the cytoplasm, within mitochondria and in association with the outer face of the endoplasmic reticulum membrane. In both cell types, CB NPs reduced in a dose-dependent manner the activity of aromatase enzyme, as reflected by a decrease in E2 secretion. A significant decrease was observed in response to CB NPs concentrations from 25 and 50 µg/mL in KGN cell line and primary cultures, respectively. Furthermore, CB NPs decreased aromatase protein levels in both cells and reduced aromatase transcript levels in KGN cells. CB NPs rapidly activated extracellular signal-regulated kinase 1 and 2 in KGN cells and pharmacological inhibition of this signaling pathway using PD 98059 significantly attenuated the inhibitory effects of CB NPs on CYP19A1 gene expression and aromatase activity. CB NPs also inhibited the stimulatory effect of FSH on aromatase expression and activity. Altogether, our study on cultured ovarian granulosa cells reveals that CB NPs decrease estrogens production and highlights possible detrimental effect of these common NPs on female reproductive health.
Assuntos
Inibidores da Aromatase/farmacologia , Estradiol/metabolismo , Células da Granulosa/enzimologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Nanopartículas/administração & dosagem , Fuligem/farmacologia , Aromatase/genética , Aromatase/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/farmacologia , Estradiol/biossíntese , Antagonistas de Estrogênios , Feminino , Fertilização in vitro , Hormônio Foliculoestimulante/administração & dosagem , Células da Granulosa/química , Células da Granulosa/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Nanopartículas/análise , Fuligem/administração & dosagem , Fuligem/análiseRESUMO
Anti-Müllerian hormone (AMH) contributes to male sexual differentiation and acts on gonads of both sexes. Identification of AMH receptivity in both pituitary and brain has led to the intriguing idea that AMH participates to the hypothalamic-pituitary control of reproduction, however in vivo experimental evidence is still lacking. We show that AMH stimulates secretion and pituitary gene expression of the gonadotropin FSH in vivo in rats. AMH action is sex-dependent, being restricted to females and occurring before puberty. Accordingly, we report higher levels of pituitary AMH receptor transcripts in immature females. We show that AMH is functionally coupled to the Smad pathway in LßT2 gonadotrope cells and dose-dependently increases Fshb transcript levels. Furthermore, AMH was shown to establish complex interrelations with canonical FSH regulators as it cooperates with activin to induce Fshb expression whereas it reduces BMP2 action. We report that GnRH interferes with AMH by decreasing AMH receptivity in vivo in females. Moreover, AMH specifically regulates FSH and not LH, indicating that AMH is a factor contributing to the differential regulation of gonadotropins. Overall, our study uncovers a new role for AMH in regulating gonadotrope function and suggests that AMH participates in the postnatal elevation of FSH secretion in females.
Assuntos
Hormônio Antimülleriano/genética , Hormônio Foliculoestimulante/genética , Gonadotrofos/metabolismo , Adeno-Hipófise/metabolismo , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Caracteres Sexuais , Ativinas/genética , Ativinas/metabolismo , Animais , Animais Recém-Nascidos , Hormônio Antimülleriano/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Linhagem Celular , Feminino , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Gonadotrofos/citologia , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Masculino , Adeno-Hipófise/citologia , Adeno-Hipófise/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Maturidade Sexual , Transdução de Sinais , Proteínas Smad/genética , Proteínas Smad/metabolismoRESUMO
Secretory Phospholipase A2 of type IIA (sPLA2 IIA) plays a crucial role in the production of lipid mediators by amplifying the neointimal inflammatory context of the vascular smooth muscle cells (VSMCs), especially during atherogenesis. Phenformin, a biguanide family member, by its anti-inflammatory properties presents potential for promoting beneficial effects upon vascular cells, however its impact upon the IL-1ß-induced sPLA2 gene expression has not been deeply investigated so far. The present study was designed to determine the relationship between phenformin coupling AMP-activated protein kinase (AMPK) function and the molecular mechanism by which the sPLA2 IIA expression was modulated in VSMCs. Here we find that 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleotide (AICAR) treatment strongly repressed IL-1ß-induced sPLA2 expression at least at the transcriptional level. Our study reveals that phenformin elicited a dose-dependent inhibition of the sPLA2 IIA expression and transient overexpression experiments of constitutively active AMPK demonstrate clearly that AMPK signaling is involved in the transcriptional inhibition of sPLA2-IIA gene expression. Furthermore, although the expression of the transcriptional repressor B-cell lymphoma-6 protein (BCL-6) was markedly enhanced by phenformin and AICAR, the repression of sPLA2 gene occurs through a mechanism independent of BCL-6 DNA binding site. In addition we show that activation of AMPK limits IL-1ß-induced NF-κB pathway activation. Our results indicate that BCL-6, once activated by AMPK, functions as a competitor of the IL-1ß induced NF-κB transcription complex. Our findings provide insights on a new anti-inflammatory pathway linking phenformin, AMPK and molecular control of sPLA2 IIA gene expression in VSMCs.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fosfolipases A2 do Grupo II/genética , Interleucina-1beta/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Transdução de Sinais/efeitos dos fármacos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Sítios de Ligação , Bovinos , Separação Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Fosfolipases A2 do Grupo II/metabolismo , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , NF-kappa B/metabolismo , Fenformin/farmacologia , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Ribonucleotídeos/farmacologia , Ativação Transcricional/efeitos dos fármacosRESUMO
Reproductive function is highly dependent on nutritional input. We recently provided evidence that the unsaturated ω6 fatty acid (FA), linoleic acid (linoleic), interferes with transcription and secretion of the gonadotropin LH, highlighting the existence of a lipid sensing in pituitary gonadotropes. Here, we show, using a combination of in vivo and in vitro models, that linoleic differentially regulates Lhb and Fshb expression. Central exposure of rats to linoleic over 7 days was associated with increase of Lhb but not Fshb transcript levels. Consistently, exposure of rat pituitary cells or LßT2 cells to linoleic increased Lhb, whereas it dramatically decreased Fshb transcript levels without affecting its stability. This effect was also induced by ω9 and ω3-polyunsaturated FA but not by saturated palmitic acid. Analysis of the underlying mechanisms in LßT2 cells using small interfering RNA revealed that early growth response protein 1 mediates linoleic stimulation of Lhb expression. Furthermore, we demonstrated that linoleic counteracts activin and bone morphogenetic protein-2 stimulation of Fshb expression. Using Western blotting and Smad-responsive reporter gene assays, linoleic was shown to decrease basal Smad2/3 phosphorylation levels as well as activin- and bone morphogenetic protein-2-dependent activation of Smad, uncovering a new FA-sensitive signaling cascade. Finally, the protein phosphatase magnesium-dependent 1A was shown to mediate linoleic inhibition of basal Smad phosphorylation and Fshb expression, identifying protein phosphatase magnesium-dependent 1A as a new target of FA in gonadotropes. Altogether, this study provides a novel mechanism by which FAs target gene expression and underlines the relevant role of pituitary gonadotropes in mediating the effects of nutritional FA on reproductive function.
Assuntos
Ácidos Graxos Insaturados/farmacologia , Subunidade beta do Hormônio Folículoestimulante/genética , Gonadotrofos/metabolismo , Ácido Linoleico/farmacologia , Proteínas Smad/metabolismo , Animais , Células Cultivadas , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Expressão Gênica/efeitos dos fármacos , Gonadotrofos/efeitos dos fármacos , Masculino , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologiaRESUMO
In mammals, the receptor of the neuropeptide gonadotropin-releasing hormone (GnRHR) is unique among the G protein-coupled receptor (GPCR) family because it lacks the carboxyl-terminal tail involved in GPCR desensitization. Therefore, mechanisms involved in the regulation of GnRHR signaling are currently poorly known. Here, using immunoprecipitation and GST pull-down experiments, we demonstrated that SET interacts with GnRHR and targets the first and third intracellular loops. We delineated, by site-directed mutagenesis, SET binding sites to the basic amino acids (66)KRKK(69) and (246)RK(247), located next to sequences required for receptor signaling. The impact of SET on GnRHR signaling was assessed by decreasing endogenous expression of SET with siRNA in gonadotrope cells. Using cAMP and calcium biosensors in gonadotrope living cells, we showed that SET knockdown specifically decreases GnRHR-mediated mobilization of intracellular cAMP, whereas it increases its intracellular calcium signaling. This suggests that SET influences signal transfer between GnRHR and G proteins to enhance GnRHR signaling to cAMP. Accordingly, complexing endogenous SET by introduction of the first intracellular loop of GnRHR in αT3-1 cells significantly reduced GnRHR activation of the cAMP pathway. Furthermore, decreasing SET expression prevented cAMP-mediated GnRH stimulation of Gnrhr promoter activity, highlighting a role of SET in gonadotropin-releasing hormone regulation of gene expression. In conclusion, we identified SET as the first direct interacting partner of mammalian GnRHR and showed that SET contributes to a switch of GnRHR signaling toward the cAMP pathway.
Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Gonadotrofos/metabolismo , Receptores LHRH/química , Animais , Sinalização do Cálcio , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Ratos , Receptores LHRH/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de SinaisRESUMO
The activity of pituitary gonadotrope cells, crucial for reproductive function, is regulated by numerous factors including signals related to nutritional status. In this work, we demonstrated, for the first time, that in vivo central exposure of rats to lipids intracarotid infusion of a heparinized triglyceride emulsion selectively increases the expression of pituitary LH subunit genes without any alteration of pituitary GnRH receptor and hypothalamic GnRH or Kiss-1 transcript levels. Furthermore, we showed that unsaturated fatty acids (UFA), oleate and linoleate, increase LH release in a dose-dependent manner as well as LHß mRNA levels in both immortalized LßT2 gonadotrope cell line and rat primary cell cultures. In contrast, the saturated palmitate was ineffective. ACTH or TSH secretion was unaffected by UFA treatment. We demonstrated in LßT2 cells that linoleate effect is mediated neither by activation of membrane fatty acid (FA) receptors GPR40 or GPR120 although we characterized these receptors in LßT2 cells, nor through nuclear peroxisome proliferator-activated receptors. Furthermore, linoleate ß-oxidation is not required for its action on LH secretion. In contrast, pharmacological inhibition of protein kinase C (PKC) or ERK pathways significantly prevented linoleate-stimulated LH release. Accordingly, linoleate was shown to activate novel PKC isoforms, PKCε and -θ, as well as ERK1/2 in LßT2 cells. Lastly, unsaturated, but not saturated, FA inhibited GnRH-induced LH secretion in LßT2 cells as well as in pituitary cell cultures. Altogether, these results suggest that the pituitary is a relevant site of FA action and that UFA may influence reproduction by directly interfering with basal and GnRH-dependent gonadotrope activity.
Assuntos
Ácidos Graxos Insaturados/farmacologia , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Isoenzimas/fisiologia , Hormônio Luteinizante/metabolismo , Proteína Quinase C-épsilon/fisiologia , Proteína Quinase C/fisiologia , Animais , Células Cultivadas , Gonadotrofos/metabolismo , Masculino , Proteína Quinase C-theta , RatosRESUMO
The inflammation that occurs during atherosclerosis is characterized by the release of large amounts of group IIA secretory phospholipase A2 (sPLA2-IIA). This study was designed to define the function of the three peroxisome proliferator-activated receptors (PPARs) on sPLA2 expression in vascular smooth muscle cells (VSMCs). We found that PPAR ligands decreased sPLA2-IIA activity and inhibited mRNA accumulation under inflammatory conditions. Furthermore, interleukin-1beta-induced sPLA2-IIA promoter activity was inhibited by the three PPAR ligands and in a similar way when cells were cotransfected with PPARalpha, PPARbeta, or PPARgamma, plus retinoid X receptor alpha (RXRalpha). Our study revealed that the regulation of sPLA2-IIA gene transcription by PPARalpha/RXR and PPARgamma/RXR heterodimers requires an interaction with a PPAR response element (PPRE) of the sPLA2-IIA promoter. In contrast, PPARbeta operates through a PPRE-independent mechanism. In addition, we demonstrated that VSMCs expressed the transcriptional repressor BCL-6. Overexpression of BCL-6 markedly reduced sPLA2-IIA promoter activity in VSMCs, while a dominant negative form of BCL-6 abrogated sPLA2 repression by PPARbeta. The PPARbeta agonist induced a BCL-6 binding to the sPLA2 promoter in VSMCs under inflammatory conditions. The knockdown of BCL-6 by short interfering RNA abolished the inhibitory effect of the PPARbeta ligand on sPLA2 activity and prostaglandin E2 release. Thus, the inhibition of sPLA2-IIA activity by PPARbeta agonists may provide a promising approach to impacting the initiation and progression of atherosclerosis.