Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 7694, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118484

RESUMO

Staphylococcus aureus causes serious medical problems in human and animals. Here we show that S. aureus can compromise host genomic integrity as indicated by bacteria-induced histone H2AX phosphorylation, a marker of DNA double strand breaks (DSBs), in human cervix cancer HeLa and osteoblast-like MG-63 cells. This DNA damage is mediated by alpha phenol-soluble modulins (PSMα1-4), while a specific class of lipoproteins (Lpls), encoded on a pathogenicity island in S. aureus, dampens the H2AX phosphorylation thus counteracting the DNA damage. This DNA damage is mediated by reactive oxygen species (ROS), which promotes oxidation of guanine forming 7,8-dihydro-8-oxoguanine (8-oxoG). DNA damage is followed by the induction of DNA repair that involves the ATM kinase-signaling pathway. An examination of S. aureus strains, isolated from the same patient during acute initial and recurrent bone and joint infections (BJI), showed that recurrent strains produce lower amounts of Lpls, induce stronger DNA-damage and prompt the G2/M transition delay to a greater extent that suggest an involvement of these mechanisms in adaptive processes of bacteria during chronicization. Our findings redefine our understanding of mechanisms of S. aureus-host interaction and suggest that the balance between the levels of PSMα and Lpls expression impacts the persistence of the infection.


Assuntos
Dano ao DNA , Staphylococcus aureus/patogenicidade , Acetilcisteína/farmacologia , Artrite Infecciosa/microbiologia , Toxinas Bacterianas/farmacologia , Linhagem Celular Tumoral , Reparo do DNA , Etoposídeo/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular , Ilhas Genômicas , Guanina/análogos & derivados , Guanina/metabolismo , Células HeLa/microbiologia , Histonas/análise , Interações Hospedeiro-Patógeno , Humanos , Lipoproteínas/farmacologia , Osteíte/microbiologia , Osteoblastos/microbiologia , Estresse Oxidativo , Fosforilação , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio , Infecções Estafilocócicas/microbiologia
2.
Oncotarget ; 10(68): 7198-7219, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31921383

RESUMO

Propionibacterium freudenreichii CIRM-BIA 129 (P. freudenreichii wild type, WT) is a probiotic bacterium, which exerts immunomodulatory effects. This strain possesses extractable surface proteins, including SlpB, which are involved in anti-inflammatory effect and in adhesion to epithelial cells. We decided to investigate the impact of slpB gene mutation on immunomodulation in vitro and in vivo. In an in vitro assay, P. freudenreichii WT reduced expression of IL-8 (p<0.0001) and TNF-α (p<0.0001) cytokines in LPS-stimulated HT-29 cells. P. freudenreichii ΔslpB, lacking the SlpB protein, failed to do so. Subsequently, both strains were investigated in vivo in a 5-FU-induced mucositis mice model. Mucositis is a common side effect of cytotoxic chemotherapy with 5-FU, characterized by mucosal injury, inflammation, diarrhea, and weight loss. The WT strain prevented weight loss, reduced inflammation and consequently histopathological scores. Furthermore, it regulated key markers, including Claudin-1 (cld1, p<0.0005) and IL-17a (Il17a, p<0.0001) genes, as well as IL-12 (p<0.0001) and IL-1ß (p<0.0429) cytokines levels. Mutant strain displayed opposite regulatory effect on cld1 expression and on IL-12 levels. This work emphasizes the importance of SlpB in P. freudenreichii ability to reduce mucositis inflammation. It opens perspectives for the development of probiotic products to decrease side effects of chemotherapy using GRAS bacteria with immunomodulatory surface protein properties.

3.
Infect Immun ; 84(6): 1682-1692, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001539

RESUMO

The role of the recently described interleukin-32 (IL-32) in Staphylococcus aureus-induced mastitis, an inflammation of the mammary gland, is unclear. We determined expression of IL-32, IL-6, and IL-8 in S. aureus- and Escherichia coli-infected bovine mammary gland epithelial cells. Using live bacteria, we found that in S. aureus-infected cells, induction of IL-6 and IL-8 expression was less pronounced than in E. coli-infected cells. Notably, IL-32 expression was decreased in S. aureus-infected cells, while it was increased in E. coli-infected cells. We identified the staphylococcal phenol-soluble modulin (PSM) peptides as key contributors to these effects, as IL-32, IL-6, and IL-8 expression by epithelial cells exposed to psm mutant strains was significantly increased compared to that in cells exposed to the isogenic S. aureus wild-type strain, indicating that PSMs inhibit the production of these interleukins. The use of genetically complemented strains confirmed this observation. Inasmuch as the decreased expression of IL-32, which is involved in dendritic cell maturation, impairs immune responses, our results support a PSM-dependent mechanism that allows for the development of chronic S. aureus-related mastitis.


Assuntos
Toxinas Bacterianas/biossíntese , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Interleucinas/genética , Staphylococcus aureus/patogenicidade , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Bovinos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica , Teste de Complementação Genética , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Interleucinas/imunologia , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Transdução de Sinais , Especificidade da Espécie , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Virulência
4.
Artigo em Inglês | MEDLINE | ID: mdl-28083519

RESUMO

The cell cycle is an ordered set of events, leading to cell growth and division into two daughter cells. The eukaryotic cell cycle consists of interphase (G1, S, and G2 phases), followed by the mitotic phase and G0 phase. Many bacterial pathogens secrete cyclomodulins that interfere with the host cell cycle. In Staphylococcus aureus four cyclomodulins have been described so far that all represent toxins and are secreted into the culture supernatant. Here we show that the membrane-anchored lipoprotein-like proteins (Lpl), encoded on a genomic island called νSaα, interact with the cell cycle of HeLa cells. By comparing wild type and lpl deletion mutant it turned out that the lpl cluster is causative for the G2/M phase transition delay and also contributes to increased invasion frequency. The lipoprotein Lpl1, a representative of the lpl cluster, also caused G2/M phase transition delay. Interestingly, the lipid modification, which is essential for TLR2 signaling and activation of the immune system, is not necessary for cyclomodulin activity. Unlike the other staphylococcal cyclomodulins Lpl1 shows no cytotoxicity even at high concentrations. As all Lpl proteins are highly conserved there might be a common function that is accentuated by their multiplicity in a tandem gene cluster. The cell surface localized Lpls' suggests a correlation between G2/M phase transition delay and host cell invasion.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Lipoproteínas/metabolismo , Infecções Estafilocócicas/patologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Ciclo Celular , Deleção de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Lipoproteínas/genética , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
5.
Vaccine ; 30(9): 1609-16, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22244980

RESUMO

Recombinant poxviruses are well suited for the development of new vaccine vectors. Our previous data supported the idea that Myxomavirus (MYXV) is efficient at priming antibody responses in sheep. To provide definitive evidence on the potential of MYXV for vaccination against infectious diseases in ruminants, we investigated the immune protection provided by recombinant MYXV against bluetongue, a devastating disease in sheep. To test this concept, sheep were injected twice with an MYXV expressing the immunodominant VP2 protein (SG33-VP2). The SG33-VP2 vector promoted the production of neutralising antibodies and partially protected sheep against disease after challenge with a highly virulent strain of serotype-8 bluetongue virus (BTV-8). In contrast, an MYXV expressing both VP2 and VP5 proteins (SG33-VP2/5) elicited very little protection. The expression levels of the VP2 and VP5 proteins suggested that, greater than the co-expression of the VP5 protein which was previously thought to favour anti-VP2 antibody response, the high expression of VP2 may be critical in the MYXV context to stimulate a protective response in sheep. This highlights the requirement for a careful examination of antigen expression before any conclusion can be drawn on the respective role of the protective antigens. As a proof of principle, our study shows that an MYXV vaccine vector is possible in ruminants.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/prevenção & controle , Myxoma virus/imunologia , Carneiro Doméstico/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Masculino , Ovinos/imunologia , Ovinos/virologia , Carneiro Doméstico/virologia
6.
J Gen Virol ; 88(Pt 4): 1260-1265, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17374770

RESUMO

We analysed the genetic evolution of bovine respiratory syncytial virus (BRSV) isolate W2-00131, from its isolation in bovine turbinate (BT) cells to its inoculation in calves. Results showed that the BRSV genomic region encoding the highly variable glycoprotein G remained genetically stable after virus isolation and over 10 serial infections in BT cells, as well as following experimental inoculation in calves. This remarkable genetic stability led us to examine the mutant spectrum of several populations derived from this field isolate. Sequence analysis of molecular clones revealed an important genetic heterogeneity in the G-coding region of each population, with mutation frequencies ranging from 6.8 to 10.1 x 10(-4) substitutions per nucleotide. The non-synonymous mutations of the mutant spectrum mapped preferentially within the two variable antigenic regions of the ectodomain or close to the highly conserved domain. These results suggest that BRSV populations may evolve as complex and dynamic mutant swarms, despite apparent genetic stability.


Assuntos
Genoma Viral , Polimorfismo Genético , Vírus Sincicial Respiratório Bovino/classificação , Vírus Sincicial Respiratório Bovino/genética , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Bovinos , Doenças dos Bovinos/virologia , Mutação , Estrutura Terciária de Proteína , Infecções por Vírus Respiratório Sincicial/veterinária , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Bovino/imunologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA