Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 150(4): 209, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656555

RESUMO

PURPOSE: The receptor-interacting protein kinase (RIPK4) has an oncogenic function in melanoma, regulates NF-κB and Wnt/ß-catenin pathways, and is sensitive to the BRAF inhibitors: vemurafenib and dabrafenib which lead to its decreased level. As its role in melanoma remains not fully understood, we examined the effects of its downregulation on the transcriptomic profile of melanoma. METHODS: Applying RNA-seq, we revealed global alterations in the transcriptome of WM266.4 cells with RIPK4 silencing. Functional partners of RIPK4 were evaluated using STRING and GeneMANIA databases. Cells with transient knockdown (via siRNA) and stable knockout (via CRISPR/Cas9) of RIPK4 were stimulated with TNF-α. The expression levels of selected proteins were assessed using Western blot, ELISA, and qPCR. RESULTS: Global analysis of gene expression changes indicates a complex role for RIPK4 in regulating adhesion, migration, proliferation, and inflammatory processes in melanoma cells. Our study highlights potential functional partners of RIPK4 such as BIRC3, TNF-α receptors, and MAP2K6. Data from RIPK4 knockout cells suggest a putative role for RIPK4 in modulating TNF-α-induced production of IL-8 and IL-6 through two distinct signaling pathways-BIRC3/NF-κB and p38/MAPK. Furthermore, increased serum TNF-α levels and the correlation of RIPK4 with NF-κB were revealed in melanoma patients. CONCLUSION: These data reveal a complex role for RIPK4 in regulating the immune signaling network in melanoma cells and suggest that this kinase may represent an alternative target for melanoma-targeted adjuvant therapy.


Assuntos
Interleucina-6 , Interleucina-8 , Melanoma , Fator de Necrose Tumoral alfa , Humanos , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Interleucina-6/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685949

RESUMO

Endothelial cells are a preferential target for SARS-CoV-2 infection. Previously, we have reported that vascular adenosine deaminase 1 (ADA1) may serve as a biomarker of endothelial activation and vascular inflammation, while ADA2 plays a critical role in monocyte and macrophage function. In this study, we investigated the activities of circulating ADA isoenzymes in patients 8 weeks after mild COVID-19 and related them to the parameters of inflammation and microvascular/endothelial function. Post-COVID patients revealed microvascular dysfunction associated with the changes in circulating parameters of endothelial dysfunction and inflammatory activation. Interestingly, serum total ADA and ADA2 activities were diminished in post-COVID patients, while ADA1 remained unchanged in comparison to healthy controls without a prior diagnosis of SARS-CoV-2 infection. While serum ADA1 activity tended to positively correspond with the parameters of endothelial activation and inflammation, sICAM-1 and TNFα, serum ADA2 activity correlated with IL-10. Simultaneously, post-COVID patients had lower circulating levels of ADA1-anchoring protein, CD26, that may serve as an alternative receptor for virus binding. This suggests that after the infection CD26 is rather maintained in cell-attached form, enabling ADA1 complexing. This study points to the possible role of ADA isoenzymes in cardiovascular complications after mild COVID-19.


Assuntos
Adenosina Desaminase , COVID-19 , Doenças Vasculares , Humanos , COVID-19/metabolismo , Dipeptidil Peptidase 4 , Células Endoteliais , Inflamação , Isoenzimas , SARS-CoV-2
3.
Sci Rep ; 13(1): 6273, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072464

RESUMO

Self-assembling peptides can be used for the regeneration of severely damaged skin. They can act as scaffolds for skin cells and as a reservoir of active compounds, to accelerate scarless wound healing. To overcome repeated administration of peptides which accelerate healing, we report development of three new peptide biomaterials based on the RADA16-I hydrogel functionalized with a sequence (AAPV) cleaved by human neutrophil elastase and short biologically active peptide motifs, namely GHK, KGHK and RDKVYR. The peptide hybrids were investigated for their structural aspects using circular dichroism, thioflavin T assay, transmission electron microscopy, and atomic force microscopy, as well as their rheological properties and stability in different fluids such as water or plasma, and their susceptibility to digestion by enzymes present in the wound environment. In addition, the morphology of the RADA-peptide hydrogels was examined with a unique technique called scanning electron cryomicroscopy. These experiments enabled us to verify if the designed peptides increased the bioactivity of the gel without disturbing its gelling processes. We demonstrate that the physicochemical properties of the designed hybrids were similar to those of the original RADA16-I. The materials behaved as expected, leaving the active motif free when treated with elastase. XTT and LDH tests on fibroblasts and keratinocytes were performed to assess the cytotoxicity of the RADA16-I hybrids, while the viability of cells treated with RADA16-I hybrids was evaluated in a model of human dermal fibroblasts. The hybrid peptides revealed no cytotoxicity; the cells grew and proliferated better than after treatment with RADA16-I alone. Improved wound healing following topical delivery of RADA-GHK and RADA-KGHK was demonstrated using a model of dorsal skin injury in mice and histological analyses. The presented results indicate further research is warranted into the engineered peptides as scaffolds for wound healing and tissue engineering.


Assuntos
Hidrogéis , Sinais Direcionadores de Proteínas , Camundongos , Humanos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Peptídeos/farmacologia , Peptídeos/química , Cicatrização
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835295

RESUMO

Adipose-derived mesenchymal stromal cells (AD-MSCs) have been extensively studied in recent years. Their attractiveness is due to the ease of obtaining clinical material (fat tissue, lipoaspirate) and the relatively large number of AD-MSCs present in adipose tissue. In addition, AD-MSCs possess a high regenerative potential and immunomodulatory activities. Therefore, AD-MSCs have great potential in stem cell-based therapies in wound healing as well as in orthopedic, cardiovascular, or autoimmune diseases. There are many ongoing clinical trials on AD-MSC and in many cases their effectiveness has been proven. In this article, we present current knowledge about AD-MSCs based on our experience and other authors. We also demonstrate the application of AD-MSCs in selected pre-clinical models and clinical studies. Adipose-derived stromal cells can also be the pillar of the next generation of stem cells that will be chemically or genetically modified. Despite much research on these cells, there are still important and interesting areas to explore.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Tecido Adiposo , Diferenciação Celular
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917000

RESUMO

Technological developments in the field of biologically active peptide applications in medicine have increased the need for new methods for peptide delivery. The disadvantage of peptides as drugs is their low biological stability. Recently, great attention has been paid to self-assembling peptides that can form fibrils. Such a formulation makes bioactive peptides more resistant to enzymatic degradation and druggable. Peptide fibrils can be carriers for peptides with interesting biological activities. These features open up prospects for using the peptide fibrils as long-acting drugs and are a valid alternative to conventional peptidic therapies. In our study, we designed new peptide scaffolds that are a hybrid of three interconnected amino acid sequences and are: pro-regenerative, cleavable by neutrophilic elastase, and fibril-forming. We intended to obtain peptides that are stable in the wound environment and that, when applied, would release a biologically active sequence. Our studies showed that the designed hybrid peptides show a high tendency toward regular fibril formation and are able to release the pro-regenerative sequence. Cytotoxicity studies showed that all the designed peptides were safe, did not cause cytotoxic effects and revealed a pro-regenerative potential in human fibroblast and keratinocyte cell lines. In vivo experiments in a dorsal skin injury model in mice indicated that two tested peptides moderately promote tissue repair in their free form. Our research proves that peptide fibrils can be a druggable form and a scaffold for active peptides.


Assuntos
Portadores de Fármacos/química , Peptídeos/química , Peptídeos/farmacologia , Alicerces Teciduais/química , Cicatrização/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Fibroblastos , Humanos , Queratinócitos , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica , Proteólise , Medicina Regenerativa , Análise Espectral
6.
Med Res Rev ; 41(4): 2130-2171, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33522005

RESUMO

Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Idoso , Humanos , Medicina Regenerativa , Células Estromais , Cicatrização
7.
Anticancer Agents Med Chem ; 21(4): 462-467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32416705

RESUMO

BACKGROUND: Although Mycophenolic Acid (MPA) is applied as prodrugs in clinic as an immunosuppressant, it also possesses anticancer activity. MPA acts as Inosine-5'-Monophosphate Dehydrogenase (IMPDH) inhibitor, where the carboxylic group at the end of the side chain interacts with Ser 276 of the enzyme via hydrogen bonds. Therefore, MPA derivatives with other polar groups indicated high inhibition too. On the other hand, potent anticancer agents like dacarbazine and cisplatin give numerous side-effects. OBJECTIVE: Based on the literature data, MPA derivatives should be explored towards anticancer properties. Conversion of the carboxylic group of MPA to amide could maintain antiproliferative activity. Therefore, we decided to investigate several amino acid and peptide derivatives of MPA against chosen cancer cell lines in vitro. METHODS: Amides of MPA hold threonine and arginine amino acid unit. These amino acid derivatives were tested as L and D enantiomers and both in free acid and methyl esters forms. Additionally, MPA was modified with tuftsin or retro-tuftsin as biologically active peptides, which could act as a drug carrier. RESULTS: Amino acid and peptide derivatives of MPA were investigated in vitro as potential anticancer agents on cell lines: Ab melanoma, A375 melanoma and SHSY5Y neuroblastoma. The activity of the tested compounds was compared to parent MPA and known chemotherapeutics: dacarbazine and cisplatin. CONCLUSION: Amino acid moiety and the sequence of amino acids in the peptide part influenced observed activity. The most active amino acid MPA analogues occurred to be D and L-threonine derivatives as methyl esters, probably due to better cell membrane penetration.


Assuntos
Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Ácido Micofenólico/farmacologia , Peptídeos/farmacologia , Aminoácidos/síntese química , Aminoácidos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Mitocôndrias/efeitos dos fármacos , Estrutura Molecular , Ácido Micofenólico/síntese química , Ácido Micofenólico/química , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade
8.
Molecules ; 25(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585846

RESUMO

Regeneration and wound healing are vital to tissue homeostasis and organism survival. One of the biggest challenges of today's science and medicine is finding methods and factors to stimulate these processes in the human body. Effective solutions to promote regenerative responses will accelerate advances in tissue engineering, regenerative medicine, transplantology, and a number of other clinical specialties. In this study, we assessed the potential efficacy of a synthetic hexapeptide, RDKVYR, for the stimulation of tissue repair and wound healing. The hexapeptide is marketed under the name "Imunofan" (IM) as an immunostimulant. IM displayed stability in aqueous solutions, while in plasma it was rapidly bound by albumins. Structural analyses demonstrated the conformational flexibility of the peptide. Tests in human fibroblast and keratinocyte cell lines showed that IM exerted a statistically significant (p < 0.05) pro-proliferative activity (30-40% and 20-50% increase in proliferation of fibroblast and keratinocytes, respectively), revealed no cytotoxicity over a vast range of concentrations (p < 0.05), and had no allergic properties. IM was found to induce significant transcriptional responses, such as enhanced activity of genes involved in active DNA demethylation (p < 0.05) in fibroblasts and activation of genes involved in immune responses, migration, and chemotaxis in adipose-derived stem cells derived from surgery donors. Experiments in a model of ear pinna injury in mice indicated that IM moderately promoted tissue repair (8% in BALB/c and 36% in C57BL/6 in comparison to control).


Assuntos
Proliferação de Células/efeitos dos fármacos , Oligopeptídeos/farmacologia , Pele/patologia , Cicatrização , Albuminas/metabolismo , Animais , Basófilos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Quimiotaxia/efeitos dos fármacos , Citocinas/metabolismo , Metilação de DNA/efeitos dos fármacos , Orelha/patologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Células HaCaT/citologia , Células HaCaT/efeitos dos fármacos , Humanos , Injeções Subcutâneas , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligopeptídeos/sangue , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
9.
Data Brief ; 28: 105069, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31956674

RESUMO

Applications of bioactive peptides and polypeptides are emerging in areas such as drug development and drug delivery systems. These compounds are bioactive, biocompatible and represent a wide range of chemical properties, enabling further adjustments of obtained biomaterials. However, delivering large quantities of peptide derivatives is still challenging. Several methods have been developed for the production of concatemers - multiple copies of the desired protein segments. We have presented an efficient method for the production of peptides of desired length, expressed from concatemeric Open Reading Frame. The method employs specific amplification-expression DNA vectors. The main methodological approaches are described by Skowron et al., 2020 [1]. As an illustration of the demonstrated method's utility, an epitope from the S protein of Hepatitis B virus (HBV) was amplified. Additionally, peptides, showing potentially pro-regenerative properties, derived from the angiopoietin-related growth factor (AGF) were designed and amplified. Here we present a dataset including: (i) detailed protocols for the purification of HBV and AGF - derived polyepitopic protein concatemers, (ii) sequences of the designed primers, vectors and recombinant constructs, (iii) data on cytotoxicity, immunogenicity and stability of AGF-derived polypeptides.

10.
Mater Sci Eng C Mater Biol Appl ; 108: 110426, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923928

RESUMO

A DNA fragment amplification/expression technology for the production of new generation biomaterials for scientific, industrial and biomedical applications is described. The technology enables the formation of artificial Open Reading Frames (ORFs) encoding concatemeric RNAs and proteins. It recruits the Type IIS SapI restriction endonuclease (REase) for an assembling of DNA fragments in an ordered head-to-tail-orientation. The technology employs a vector-enzymatic system, dedicated to the expression of newly formed, concatemeric ORFs from strong promoters. Four vector series were constructed to suit specialised needs. As a proof of concept, a model amplification of a 7-amino acid (aa) epitope from the S protein of HBV virus was performed, resulting in 500 copies of the epitope-coding DNA segment, consecutively linked and expressed in Escherichia coli (E. coli). Furthermore, a peptide with potential pro-regenerative properties (derived from an angiopoietin-related growth factor) was designed. Its aa sequence was back-translated, codon usage optimized and synthesized as a continuous ORF 10-mer. The 10-mer was cloned into the amplification vector, enabling the N-terminal fusion and multiplication of the encoded protein with MalE signal sequence. The obtained genes were expressed, and the proteins were purified. Conclusively, we show that the proteins are neither cytotoxic nor immunogenic and they have a very low allergic potential.


Assuntos
Materiais Biocompatíveis , DNA Concatenado , Escherichia coli , Expressão Gênica , Técnicas de Amplificação de Ácido Nucleico , Fases de Leitura Aberta , DNA Concatenado/genética , DNA Concatenado/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus da Hepatite B/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Virais de Fusão/biossíntese , Proteínas Virais de Fusão/genética
11.
Biomed Pharmacother ; 130: 110515, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34321163

RESUMO

PURPOSE: This paper concerns the cytotoxicity of 9-chloro-1-nitroacridine (1a) and 9-chloro-4-methyl-1-nitroacridine (1b) against two biologically different melanoma forms: melanotic and amelanotic. Melanomas are tumors characterized by high heterogeneity and poor susceptibility to chemotherapies. Among new analogs synthesized by us, compound 1b exhibited the highest anticancer potency. Because of that, in this study, we analyzed the mechanism of action for 1a and its 4-methylated derivative, 1b, against a pair of biological melanoma forms, with regard to proliferation, cell death mechanism and energetic state. METHODS: Cytotoxicity was evaluated by XTT assay. Cell death was estimated by plasma membrane structure changes (phosphatidylserine externalization), caspase activation, and ROS presence. The energetic state of cells was estimated based on NAD and ATP levels, and the activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, isocitrate dehydrogenase). RESULTS: The chloroacridines affect biological forms of melanoma in different ways. Amelanotic (Ab) melanoma (with inhibited melanogenesis and higher malignancy) was particularly sensitive to the action of the chloroacridines. The Ab melanoma cells died through apoptosis and through death without caspase activation. Diminished activity of TAC enzymes was noticed among Ab melanoma cells together with ATP/NAD depletion, especially in the case of 1b. CONCLUSION: Our data show that the biological forms of the tumors responded to 1a and its 4-methylated analog in different ways. 1a and 1b could be inducers of regulated melanoma cell death, especially the amelanotic form. Although the mechanism of the cell death is not fully understood, 1b may act by interfering with the TAC enzymes and blocking specific pathways leading to tumor growth. This could encourage further investigation of its anticancer activity, especially against the amelanotic form of melanoma.


Assuntos
Acridinas/farmacologia , Antineoplásicos/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Acridinas/química , Trifosfato de Adenosina/biossíntese , Apoptose/efeitos dos fármacos , Biomarcadores , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Metabolismo Energético/efeitos dos fármacos , Humanos , NAD/biossíntese , Espécies Reativas de Oxigênio/metabolismo
12.
Postepy Dermatol Alergol ; 36(2): 139-146, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31320845

RESUMO

Various types of cancer are nowadays a serious medical and social problem and a great challenge for modern medicine. The majority of anticancer therapy is based on traditional chemotherapy and radiotherapy. Both of these highly non-specific types of treatment have a number of serious side effects including wound healing complications. Radiotherapy and chemotherapy mostly affect rapidly dividing skin cells (e.g. keratinocytes), as well as fibroblasts, melanocytes, endothelial and immune cells. Currently, there are many strategies to improve wound healing in oncological patients, including various types of dressings, biomaterials, growth factors, and cell therapies.

13.
Med Chem ; 15(7): 729-737, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30324889

RESUMO

BACKGROUND: The lack of efficacious therapy for advanced melanoma and neuroblastoma makes new approaches necessary. Therefore, many scientists seek new, more effective, more selective and less toxic anticancer drugs. OBJECTIVE: We propose the synthesis of the new functionalized analogs of 1-nitroacridine/4- nitroacridone connected to tuftsin/retro-tuftsin derivatives as potential anticancer agents. METHODS: Acridine and acridone analogues were prepared by Ullmann condensation and then cyclization reaction. As a result of nucleophilic substitution reaction 1-nitro-9-phenoxyacridine or 1- chloro-4-nitro-9(10H)-acridone with the corresponding peptides, the planned acridine derivatives (10a-c, 12, 17-a-d, 19) have been obtained. The cytotoxic activity of the newly obtained analogs were evaluated against melanotic (Ma) and amelanotic (Ab) melanoma cell lines and neuroblastoma SH-SY5Y by using the XTT method. Apoptosis and cell cycle were analyzed by flow cytometry. RESULTS: Among the investigated analogs compound 12 exhibited the highest potency comparable to dacarbazine action for amelanotic Ab melanoma cells. FLICA test (flurochrome-labeled inhibitors of caspases) showed that this analog significantly increased the content of cells with activated caspases (C+) among both neuroblastoma lines and only Ab melanoma line. Using phosphatidylserine (PS) externalization assay, 12 induced changes in the Ab melanoma plasma membrane structure as the externalization of phosphatidylserine (An+ cells). These changes in neuroblastoma cells were less pronounced. CONCLUSION: Analog 12 could be proposed as the new potential chemotherapeutic against amelanotic melanoma form especially.


Assuntos
Acridinas/farmacologia , Acridonas/farmacologia , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Acridinas/síntese química , Acridinas/química , Acridonas/síntese química , Acridonas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Melanoma/patologia , Estrutura Molecular , Relação Estrutura-Atividade
14.
J Cancer Res Clin Oncol ; 145(1): 165-179, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30367436

RESUMO

PURPOSE: As a continuation of our search for anticancer agents, we have synthesized a new acridine-retrotuftsin analog HClx9-[Arg(NO2)-Pro-Lys-Thr-OCH3]-1-nitroacridine (named ART) and have evaluated its activity against melanoma and neuroblastoma lines. Both tumors develop from cells (melanocytes, neurons) of neuroectodermal origin, and both are tumors with high heterogeneity and unsatisfactory susceptibility to chemotherapies. Thus, we analyzed the action of ART on pairs of biological forms of melanoma (amelanotic and melanotic) and neuroblastoma (dopaminergic and cholinergic) with regard to proliferation, mechanism of cell death, and effect on the activity of tricarboxylic acid cycle (TAC) enzymes. METHODS: The cytotoxicity of ART was evaluated by XTT and trypan blue tests. Cell death was estimated by plasma membrane structure changes (phosphatidylserine and calreticulin externalization), caspase activation, presence of ROS (reactive oxygen species), activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, and isocitrate dehydrogenase), NAD level, and ATP level. RESULTS: ART influences the biological forms of melanoma and neuroblastoma in different ways. Amelanotic (Ab) melanoma (with the inhibited melanogenesis, higher malignancy) and SHSY5Y neuroblastoma (with cholinergic DC cells) were especially sensitive to ART action. The Ab melanoma cells died through apoptosis, while, with SH-SY5Y-DC neuroblastoma, the number of cells decreased but not as a result of apoptosis. With Ab melanoma and SH-SY5Y-DC cells, a diminished activity of TAC enzymes was noticed, along with ATP/NAD depletion. CONCLUSION: Our data show that the biological forms of certain tumors responded in different ways to the action of ART. As a combination of retrotuftsin and acridine, the compound can be an inducer of apoptotic cell death of melanoma, especially the amelanotic form. Although the mechanism of the interrelationships between energy metabolism and cell death is not fully understood, interference of ART with TAC enzymes could encourage the further investigation of its anticancer action.


Assuntos
Antineoplásicos/uso terapêutico , Melanoma/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/farmacologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico , Cricetulus , Ativação Enzimática , Humanos , Isocitrato Desidrogenase/metabolismo , Melanoma/patologia , NAD/metabolismo , Neuroblastoma/patologia , Complexo Piruvato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Sci Rep ; 8(1): 11339, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054533

RESUMO

Adipose-derived stem cells (ASCs) have become an important research model in regenerative medicine. However, there are controversies regarding the impact of prolonged cell culture on the ASCs phenotype and their differentiation potential. Hence, we studied 10 clinical ASCs replicates from plastic and oncological surgery patients, in six-passage FBS supplemented cultures. We quantified basic mesenchymal cell surface marker transcripts and the encoded proteins after each passage. In parallel, we investigated the differentiation potential of ASCs into chondrocytes, osteocytes and adipocytes. We further determined the effects of FBS supplementation and subsequent deprivation on the whole transcriptome by comprehensive mRNA and miRNA sequencing. Our results show that ASCs maintain differentiation potential and consistent profile of key mesenchymal markers, with apparent expression of distinct isoforms, in long-term cultures. No significant differences were observed between plastic and oncological surgery cohorts. ASCs in FBS supplemented primary cultures are almost committed to mesenchymal lineages as they express key epithelial-mesenchymal transition genes including early mesenchymal markers. Furthermore, combined mRNA/miRNA expression profiling strongly supports a modulatory role for the miR-30 family in the commitment process to mesenchymal lineages. Finally, we propose improvements to existing qPCR based assays that address alternative isoform expression of mesenchymal markers.


Assuntos
Tecido Adiposo/citologia , Perfilação da Expressão Gênica , Imunofenotipagem , Células-Tronco/metabolismo , Transcrição Gênica , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Redes Reguladoras de Genes , Humanos , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
16.
Molecules ; 23(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443886

RESUMO

During recent decades, the market for peptide-based drugs, including antimicrobial peptides, has vastly extended and evolved. These drugs can be useful in treatment of various types of disorders, e.g., cancer, autoimmune diseases, infections, and non-healing wounds. Although peptides are less immunogenic than other biologic therapeutics, they can still induce immune responses and cause allergies. It is important to evaluate the immunogenic and allergic potential of peptides before they are forwarded to the expensive stages of clinical trials. The process of the evaluation of immunogenicity and cytotoxicity is complicated, as in vitro models and bioinformatics tools cannot fully simulate situations in the clinic. Nevertheless, several potentially promising tests for the preclinical evaluation of peptide drugs have been implemented (e.g., cytotoxicity assays, the basophil activation test, and lymphocyte activation assays). In this review, we focus on strategies for evaluation of the allergic potential of peptide-based therapeutics.


Assuntos
Alérgenos/uso terapêutico , Antibacterianos/uso terapêutico , Hipersensibilidade/imunologia , Peptídeos/uso terapêutico , Alérgenos/química , Alérgenos/imunologia , Antibacterianos/efeitos adversos , Antibacterianos/imunologia , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Dermatologia , Humanos , Hipersensibilidade/etiologia , Imunidade Celular/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Peptídeos/efeitos adversos , Peptídeos/imunologia
17.
Bioorg Med Chem ; 25(4): 1431-1439, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110818

RESUMO

A peptidomimetic called A20 (Cystapep 1) structurally based upon the N-terminal fragment of human cystatin C is known to have strong antibacterial properties. A20 is characterized by high activity against several bacterial strains often isolated from infected wounds, including methicillin-resistant S. aureus (MRSA). In this work we wanted to explore the therapeutic potential of A20 in the treatment of wound infections. We examined, cytotoxicity, allergenicity and impact of A20 on the proliferation and viability of human keratinocytes. Furthermore, the previously described antimicrobial action of A20has been confirmed here with reference strains of bacteria and extended by several other species. The A20 was highly active against Gram-positive bacteria with minimal inhibitory (MIC) and minimal bactericidal concentrations (MBC) between 8 and 128µg/mL. A20 did not affect proliferation of primary human keratinocytes in concentrations up to 50µg/mL. At the same time, it did not activate Peripheral Blood Mononuclear Cells (PBMCs), including basophils or neutrophils in vitro. Interestingly A20 was found to display immunomodulatory functions as it influences the production of Th2 cytokines (IL-4 and IL-13) by activated PBMCs. It was also resistant to degradation for at least 48h in human plasma. The results indicate that A20 is effective against the multiantibiotic-resistant bacteria and has a high safety profile, which makes it a promising antimicrobial drug candidate.


Assuntos
Antibacterianos/farmacologia , Cistatina C/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Peptidomiméticos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/síntese química , Antibacterianos/química , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Cistatina C/síntese química , Cistatina C/química , Relação Dose-Resposta a Droga , Humanos , Queratinócitos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Relação Estrutura-Atividade , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA