Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nucl Med ; 61(6): 904-910, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806771

RESUMO

Although the incidence of de novo neuroendocrine prostate cancer (PC) is rare, recent data suggest that low expression of prostate-specific membrane antigen (PSMA) is associated with a spectrum of neuroendocrine hallmarks and androgen receptor (AR) suppression in PC. Previous clinical reports indicate that PCs with a phenotype similar to neuroendocrine tumors can be more amenable to imaging by 18F-FDG than by PSMA-targeting radioligands. In this study, we evaluated the association between neuroendocrine gene signature and 18F-FDG uptake-associated genes including glucose transporters (GLUTs) and hexokinases, with the goal of providing a genomic signature to explain the reported 18F-FDG avidity of PSMA-suppressed tumors. Methods: Data-mining approaches, cell lines, and patient-derived xenograft models were used to study the levels of 14 members of the SLC2A family (encoding GLUT proteins), 4 members of the hexokinase family (genes HK1-HK3 and GCK), and PSMA (FOLH1 gene) after AR inhibition and in correlation with neuroendocrine hallmarks. Also, we characterize a neuroendocrine-like PC (NELPC) subset among a cohort of primary and metastatic PC samples with no neuroendocrine histopathology. We measured glucose uptake in a neuroendocrine-induced in vitro model and a zebrafish model by nonradioactive imaging of glucose uptake using a fluorescent glucose bioprobe, GB2-Cy3. Results: This work demonstrated that a neuroendocrine gene signature associates with differential expression of genes encoding GLUT and hexokinase proteins. In NELPC, elevated expression of GCK (encoding glucokinase protein) and decreased expression of SLC2A12 correlated with earlier biochemical recurrence. In tumors treated with AR inhibitors, high expression of GCK and low expression of SLC2A12 correlated with neuroendocrine histopathology and PSMA gene suppression. GLUT12 suppression and upregulation of glucokinase were observed in neuroendocrine-induced PC cell lines and patient-derived xenograft models. A higher glucose uptake was confirmed in low-PSMA tumors using a GB2-Cy3 probe in a zebrafish model. Conclusion: A neuroendocrine gene signature in neuroendocrine PC and NELPC associates with a distinct transcriptional profile of GLUTs and hexokinases. PSMA suppression correlates with GLUT12 suppression and glucokinase upregulation. Alteration of 18F-FDG uptake-associated genes correlated positively with higher glucose uptake in AR- and PSMA-suppressed tumors. Zebrafish xenograft tumor models are an accurate and efficient preclinical method for monitoring nonradioactive glucose uptake.


Assuntos
Fluordesoxiglucose F18 , Proteínas Facilitadoras de Transporte de Glucose/genética , Glutamato Carboxipeptidase II/antagonistas & inibidores , Hexoquinase/genética , Neoplasias da Próstata/diagnóstico por imagem , Animais , Antígenos de Superfície/genética , Linhagem Celular Tumoral , Glucose/metabolismo , Glutamato Carboxipeptidase II/genética , Humanos , Masculino , Gradação de Tumores , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Peixe-Zebra
2.
Endocr Relat Cancer ; 26(2): 131-146, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30400059

RESUMO

Prostate-specific membrane antigen (PSMA) is overexpressed in most prostate adenocarcinoma (AdPC) cells and acts as a target for molecular imaging. However, some case reports indicate that PSMA-targeted imaging could be ineffectual for delineation of neuroendocrine (NE) prostate cancer (NEPC) lesions due to the suppression of the PSMA gene (FOLH1). These same reports suggest that targeting somatostatin receptor type 2 (SSTR2) could be an alternative diagnostic target for NEPC patients. This study evaluates the correlation between expression of FOLH1, NEPC marker genes and SSTR2. We evaluated the transcript abundance for FOLH1 and SSTR2 genes as well as NE markers across 909 tumors. A significant suppression of FOLH1 in NEPC patient samples and AdPC samples with high expression of NE marker genes was observed. We also investigated protein alterations of PSMA and SSTR2 in an NE-induced cell line derived by hormone depletion and lineage plasticity by loss of p53. PSMA is suppressed following NE induction and cellular plasticity in p53-deficient NEPC model. The PSMA-suppressed cells have more colony formation ability and resistance to enzalutamide treatment. Conversely, SSTR2 was only elevated following hormone depletion. In 18 NEPC patient-derived xenograft (PDX) models we find a significant suppression of FOLH1 and amplification of SSTR2 expression. Due to the observed FOLH1-supressed signature of NEPC, this study cautions on the reliability of using PMSA as a target for molecular imaging of NEPC. The observed elevation of SSTR2 in NEPC supports the possible ability of SSTR2-targeted imaging for follow-up imaging of low PSMA patients and monitoring for NEPC development.


Assuntos
Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética , Diferenciação Celular , Progressão da Doença , Humanos , Masculino , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA