Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(18): eadg3861, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134163

RESUMO

Parasites counteract host immunity by suppressing helper nucleotide binding and leucine-rich repeat (NLR) proteins that function as central nodes in immune receptor networks. Understanding the mechanisms of immunosuppression can lead to strategies for bioengineering disease resistance. Here, we show that a cyst nematode virulence effector binds and inhibits oligomerization of the helper NLR protein NRC2 by physically preventing intramolecular rearrangements required for activation. An amino acid polymorphism at the binding interface between NRC2 and the inhibitor is sufficient for this helper NLR to evade immune suppression, thereby restoring the activity of multiple disease resistance genes. This points to a potential strategy for resurrecting disease resistance in crop genomes.


Assuntos
Resistência à Doença , Proteínas de Plantas , Humanos , Proteínas de Plantas/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Bioengenharia
2.
PLoS Genet ; 18(9): e1010414, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36137148

RESUMO

Cell surface pattern recognition receptors (PRRs) activate immune responses that can include the hypersensitive cell death. However, the pathways that link PRRs to the cell death response are poorly understood. Here, we show that the cell surface receptor-like protein Cf-4 requires the intracellular nucleotide-binding domain leucine-rich repeat containing receptor (NLR) NRC3 to trigger a confluent cell death response upon detection of the fungal effector Avr4 in leaves of Nicotiana benthamiana. This NRC3 activity requires an intact N-terminal MADA motif, a conserved signature of coiled-coil (CC)-type plant NLRs that is required for resistosome-mediated immune responses. A chimeric protein with the N-terminal α1 helix of Arabidopsis ZAR1 swapped into NRC3 retains the capacity to mediate Cf-4 hypersensitive cell death. Pathogen effectors acting as suppressors of NRC3 can suppress Cf-4-triggered hypersensitive cell-death. Our findings link the NLR resistosome model to the hypersensitive cell death caused by a cell surface PRR.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte , Morte Celular/genética , Leucina , Proteínas NLR/metabolismo , Nucleotídeos/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
3.
PLoS Biol ; 19(8): e3001136, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424903

RESUMO

In plants, nucleotide-binding domain and leucine-rich repeat (NLR)-containing proteins can form receptor networks to confer hypersensitive cell death and innate immunity. One class of NLRs, known as NLR required for cell death (NRCs), are central nodes in a complex network that protects against multiple pathogens and comprises up to half of the NLRome of solanaceous plants. Given the prevalence of this NLR network, we hypothesised that pathogens convergently evolved to secrete effectors that target NRC activities. To test this, we screened a library of 165 bacterial, oomycete, nematode, and aphid effectors for their capacity to suppress the cell death response triggered by the NRC-dependent disease resistance proteins Prf and Rpi-blb2. Among 5 of the identified suppressors, 1 cyst nematode protein and 1 oomycete protein suppress the activity of autoimmune mutants of NRC2 and NRC3, but not NRC4, indicating that they specifically counteract a subset of NRC proteins independently of their sensor NLR partners. Whereas the cyst nematode effector SPRYSEC15 binds the nucleotide-binding domain of NRC2 and NRC3, the oomycete effector AVRcap1b suppresses the response of these NRCs via the membrane trafficking-associated protein NbTOL9a (Target of Myb 1-like protein 9a). We conclude that plant pathogens have evolved to counteract central nodes of the NRC immune receptor network through different mechanisms. Coevolution with pathogen effectors may have driven NRC diversification into functionally redundant nodes in a massively expanded NLR network.


Assuntos
Evolução Biológica , Proteínas de Helminto/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas NLR/fisiologia , Solanaceae/microbiologia , Morte Celular , Resistência à Doença
4.
Plant Commun ; 1(4): 100025, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33367244

RESUMO

Effector proteins delivered inside plant cells are powerful weapons for bacterial pathogens, but this exposes the pathogen to potential recognition by the plant immune system. Therefore, the effector repertoire of a given pathogen must be balanced for a successful infection. Ralstonia solanacearum is an aggressive pathogen with a large repertoire of secreted effectors. One of these effectors, RipE1, is conserved in most R. solanacearum strains sequenced to date. In this work, we found that RipE1 triggers immunity in N. benthamiana, which requires the immune regulator SGT1, but not EDS1 or NRCs. Interestingly, RipE1-triggered immunity induces the accumulation of salicylic acid (SA) and the overexpression of several genes encoding phenylalanine-ammonia lyases (PALs), suggesting that the unconventional PAL-mediated pathway is responsible for the observed SA biosynthesis. Surprisingly, RipE1 recognition also induces the expression of jasmonic acid (JA)-responsive genes and JA biosynthesis, suggesting that both SA and JA may act cooperatively in response to RipE1. We further found that RipE1 expression leads to the accumulation of glutathione in plant cells, which precedes the activation of immune responses. R. solanacearum secretes another effector, RipAY, which is known to inhibit immune responses by degrading cellular glutathione. Accordingly, RipAY inhibits RipE1-triggered immune responses. This work shows a strategy employed by R. solanacearum to counteract the perception of its effector proteins by plant immune system.


Assuntos
Proteínas Fúngicas/genética , Nicotiana/imunologia , Imunidade Vegetal , Ralstonia solanacearum/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteínas Fúngicas/metabolismo , Ralstonia solanacearum/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Nicotiana/microbiologia
5.
Elife ; 82019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774397

RESUMO

The molecular codes underpinning the functions of plant NLR immune receptors are poorly understood. We used in vitro Mu transposition to generate a random truncation library and identify the minimal functional region of NLRs. We applied this method to NRC4-a helper NLR that functions with multiple sensor NLRs within a Solanaceae receptor network. This revealed that the NRC4 N-terminal 29 amino acids are sufficient to induce hypersensitive cell death. This region is defined by the consensus MADAxVSFxVxKLxxLLxxEx (MADA motif) that is conserved at the N-termini of NRC family proteins and ~20% of coiled-coil (CC)-type plant NLRs. The MADA motif matches the N-terminal α1 helix of Arabidopsis NLR protein ZAR1, which undergoes a conformational switch during resistosome activation. Immunoassays revealed that the MADA motif is functionally conserved across NLRs from distantly related plant species. NRC-dependent sensor NLRs lack MADA sequences indicating that this motif has degenerated in sensor NLRs over evolutionary time.


Assuntos
Proteínas NLR/química , Proteínas NLR/imunologia , Imunidade Vegetal/imunologia , Receptores Imunológicos/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis , Proteínas de Transporte , Morte Celular , Técnicas de Inativação de Genes , Modelos Moleculares , Proteínas NLR/classificação , Proteínas NLR/genética , Filogenia , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de Proteína , Nicotiana/genética , Nicotiana/imunologia
7.
BMC Genomics ; 19(1): 851, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30486780

RESUMO

BACKGROUND: Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS: We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS: We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.


Assuntos
Adaptação Fisiológica/genética , Genômica , Peronospora/genética , Doenças das Plantas/microbiologia , Heterozigoto , Funções Verossimilhança , Mitocôndrias/genética , Anotação de Sequência Molecular , Peronospora/patogenicidade , Filogenia , Análise de Sequência de RNA , Sequências Repetidas Terminais/genética
8.
New Phytol ; 212(4): 888-895, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27582271

RESUMO

888 I. 888 II. 889 III. 889 IV. 889 V. 891 VI. 891 VII. 891 VIII. 892 IX. 892 X. 893 XI. 893 893 References 893 SUMMARY: Elicitins are structurally conserved extracellular proteins in Phytophthora and Pythium oomycete pathogen species. They were first described in the late 1980s as abundant proteins in Phytophthora culture filtrates that have the capacity to elicit hypersensitive (HR) cell death and disease resistance in tobacco. Later, they became well-established as having features of microbe-associated molecular patterns (MAMPs) and to elicit defences in a variety of plant species. Research on elicitins culminated in the recent cloning of the elicitin response (ELR) cell surface receptor-like protein, from the wild potato Solanum microdontum, which mediates response to a broad range of elicitins. In this review, we provide an overview on elicitins and the plant responses they elicit. We summarize the state of the art by describing what we consider to be the nine most important features of elicitin biology.


Assuntos
Oomicetos/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Resistência à Doença , Doenças das Plantas/microbiologia , Plantas/imunologia , Plantas/microbiologia , Proteínas/química
9.
Mol Plant Microbe Interact ; 28(11): 1198-215, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26196322

RESUMO

Peronospora tabacina is an obligate biotrophic oomycete that causes blue mold or downy mildew on tobacco (Nicotiana tabacum). It is an economically important disease occurring frequently in tobacco-growing regions worldwide. We sequenced and characterized the genomes of two P. tabacina isolates and mined them for pathogenicity-related proteins and effector-encoding genes. De novo assembly of the genomes using Illumina reads resulted in 4,016 (63.1 Mb, N50 = 79 kb) and 3,245 (55.3 Mb, N50 = 61 kb) scaffolds for isolates 968-J2 and 968-S26, respectively, with an estimated genome size of 68 Mb. The mitochondrial genome has a similar size (approximately 43 kb) and structure to those of other oomycetes, plus several minor unique features. Repetitive elements, primarily retrotransposons, make up approximately 24% of the nuclear genome. Approximately 18,000 protein-coding gene models were predicted. Mining the secretome revealed approximately 120 candidate RxLR, six CRN (candidate effectors that elicit crinkling and necrosis), and 61 WY domain-containing proteins. Candidate RxLR effectors were shown to be predominantly undergoing diversifying selection, with approximately 57% located in variable gene-sparse regions of the genome. Aligning the P. tabacina genome to Hyaloperonospora arabidopsidis and Phytophthora spp. revealed a high level of synteny. Blocks of synteny show gene inversions and instances of expansion in intergenic regions. Extensive rearrangements of the gene-rich genomic regions do not appear to have occurred during the evolution of these highly variable pathogens. These assemblies provide the basis for studies of virulence in this and other downy mildew pathogens.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico/genética , Peronospora/genética , Análise de Sequência de DNA/métodos , DNA Fúngico/química , DNA Fúngico/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Genoma Mitocondrial/genética , Dados de Sequência Molecular , Oomicetos/classificação , Oomicetos/genética , Peronospora/classificação , Peronospora/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Seleção Genética , Especificidade da Espécie , Sintenia , Nicotiana/microbiologia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA