Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(3): 509-528, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412861

RESUMO

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Trends Mol Med ; 28(11): 939-950, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115805

RESUMO

Moyamoya disease (MMD) is a rare cerebrovascular disorder with unknown etiology. MMD is characterized by progressive narrowing of arteries of the brain and the formation of a compensatory network of fragile vessels. Genetic studies have identified RNF213, also known as mysterin, as a susceptibility gene for MMD, but the low penetrance in genetically susceptible individuals suggests that a second hit is necessary to trigger disease onset. Recently, several molecular studies uncovered RNF213 as a key antimicrobial protein with important functions in the immune system. In addition, an increasing number of clinical reports describe the development of moyamoya angiopathy (MMA) associated with infection or autoimmune disorders. Together, this growing body of molecular and clinical evidence points towards immune-related responses as second hits to trigger MMD onset.


Assuntos
Doença de Moyamoya , Humanos , Doença de Moyamoya/diagnóstico , Doença de Moyamoya/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Predisposição Genética para Doença , Fatores de Transcrição/genética
3.
Front Cell Infect Microbiol ; 11: 735416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804992

RESUMO

RNF213 is a large, poorly characterized interferon-induced protein. Mutations in RNF213 are associated with predisposition for Moyamoya disease (MMD), a rare cerebrovascular disorder. Recently, RNF213 was found to have broad antimicrobial activity in vitro and in vivo, yet the molecular mechanisms behind this function remain unclear. Using mass spectrometry-based proteomics and validation by real-time PCR we report here that knockdown of RNF213 leads to transcriptional upregulation of MVP and downregulation of CYR61, in line with reported pro- and anti-bacterial activities of these proteins. Knockdown of RNF213 also results in downregulation of DDAH1, which we discover to exert antimicrobial activity against Listeria monocytogenes infection. DDAH1 regulates production of nitric oxide (NO), a molecule with both vascular and antimicrobial effects. We show that NO production is reduced in macrophages from RNF213 KO mice, suggesting that RNF213 controls Listeria infection through regulation of DDAH1 transcription and production of NO. Our findings propose a potential mechanism for the antilisterial activity of RNF213 and highlight NO as a potential link between RNF213-mediated immune responses and the development of MMD.


Assuntos
Doença de Moyamoya , Óxido Nítrico , Adenosina Trifosfatases/genética , Animais , Predisposição Genética para Doença , Camundongos , Proteoma , Ubiquitina-Proteína Ligases/genética
4.
Nat Commun ; 12(1): 5772, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599178

RESUMO

ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We report that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We show that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1, human respiratory syncytial virus and coxsackievirus B3, and we observe a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.


Assuntos
Adenosina Trifosfatases/metabolismo , Anti-Infecciosos/metabolismo , Citocinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Células A549 , Animais , Enterovirus/fisiologia , Células HEK293 , Células HeLa , Herpesvirus Humano 1/fisiologia , Humanos , Interferon Tipo I/metabolismo , Gotículas Lipídicas/metabolismo , Listeria monocytogenes/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , Multimerização Proteica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Células THP-1 , Ubiquitina/metabolismo
5.
Acta Neurol Belg ; 121(1): 23-35, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32335870

RESUMO

Central hypoventilation in adult patients is a rare life-threatening condition characterised by the loss of automatic breathing, more pronounced during sleep. In most cases, it is secondary to a brainstem lesion or to a primary pulmonary, cardiac or neuromuscular disease. More rarely, it can be a manifestation of congenital central hypoventilation syndrome (CCHS). We here describe a 25-year-old woman with severe central hypoventilation triggered by analgesics. Genetic analysis confirmed the diagnosis of adult-onset CCHS caused by a heterozygous de novo poly-alanine repeat expansion of the PHOX2B gene. She was treated with nocturnal non-invasive ventilation. We reviewed the literature and found 21 genetically confirmed adult-onset CCHS cases. Because of the risk of deleterious respiratory complications, adult-onset CCHS is an important differential diagnosis in patients with central hypoventilation.


Assuntos
Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Mutação/genética , Apneia do Sono Tipo Central/diagnóstico por imagem , Apneia do Sono Tipo Central/genética , Fatores de Transcrição/genética , Adulto , Idade de Início , Feminino , Humanos , Hipoventilação/diagnóstico por imagem , Hipoventilação/genética
6.
Neurobiol Aging ; 72: 188.e3-188.e12, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30201328

RESUMO

Systematic epistasis analyses in multifactorial disorders are an important step to better characterize complex genetic risk structures. We conducted a hypothesis-free sex-stratified genome-wide screening for epistasis contributing to Alzheimer's disease (AD) susceptibility. We identified a statistical epistasis signal between the single nucleotide polymorphisms rs3733980 and rs7175766 that was associated with AD in males (genome-wide significant pBonferroni-corrected=0.0165). This signal pointed toward the genes WW and C2 domain containing 1, aka KIBRA; 5q34 and TLN2 (talin 2; 15q22.2). Gene-based meta-analysis in 3 independent consortium data sets confirmed the identified interaction: the most significant (pmeta-Bonferroni-corrected=9.02*10-3) was for the single nucleotide polymorphism pair rs1477307 and rs4077746. In functional studies, WW and C2 domain containing 1, aka KIBRA and TLN2 coexpressed in the temporal cortex brain tissue of AD subjects (ß=0.17, 95% CI 0.04 to 0.30, p=0.01); modulated Tau toxicity in Drosophila eye experiments; colocalized in brain tissue cells, N2a neuroblastoma, and HeLa cell lines; and coimmunoprecipitated both in brain tissue and HEK293 cells. Our finding points toward new AD-related pathways and provides clues toward novel medical targets for the cure of AD.


Assuntos
Doença de Alzheimer/genética , Epistasia Genética/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas/genética , Caracteres Sexuais , Talina/genética , Estudos de Coortes , Feminino , Humanos , Masculino , Metanálise como Assunto , Fatores Sexuais
7.
Neurology ; 90(8): e658-e663, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29352102

RESUMO

BACKGROUND: The progressive myoclonic epilepsies (PME) are a heterogeneous group of disorders in which a specific diagnosis cannot be made in a subset of patients, despite exhaustive investigation. C9orf72 repeat expansions are emerging as an important causal factor in several adult-onset neurodegenerative disorders, in particular frontotemporal lobar degeneration and amyotrophic lateral sclerosis. An association with PME has not been reported previously. OBJECTIVE: To identify the causative mutation in a Belgian family where the proband had genetically unexplained PME. RESULTS: We report a 33-year old woman who had epilepsy since the age of 15 and then developed progressive cognitive deterioration and multifocal myoclonus at the age of 18. The family history suggested autosomal dominant inheritance of psychiatric disorders, epilepsy, and dementia. Thorough workup for PME including whole exome sequencing did not reveal an underlying cause, but a C9orf72 repeat expansion was found in our patient and affected relatives. Brain biopsy confirmed the presence of characteristic p62-positive neuronal cytoplasmic inclusions. CONCLUSION: C9orf72 mutation analysis should be considered in patients with PME and psychiatric disorders or dementia, even when the onset is in late childhood or adolescence.


Assuntos
Proteína C9orf72/genética , Expansão das Repetições de DNA , Epilepsias Mioclônicas Progressivas/genética , Adulto , Idade de Início , Encéfalo/patologia , Família , Feminino , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Epilepsias Mioclônicas Progressivas/patologia , Epilepsias Mioclônicas Progressivas/fisiopatologia , Epilepsias Mioclônicas Progressivas/psicologia , Linhagem , Fenótipo
8.
Sci Rep ; 7: 40764, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112163

RESUMO

Tau-mediated neurodegeneration in Alzheimer's disease and tauopathies is generally assumed to start in a normally developed brain. However, several lines of evidence suggest that impaired Tau isoform expression during development could affect mitosis and ploidy in post-mitotic differentiated tissue. Interestingly, the relative expression levels of Tau isoforms containing either 3 (3R-Tau) or 4 repeats (4R-Tau) play an important role both during brain development and neurodegeneration. Here, we used genetic and cellular tools to study the link between 3R and 4R-Tau isoform expression, mitotic progression in neuronal progenitors and post-mitotic neuronal survival. Our results illustrated that the severity of Tau-induced adult phenotypes depends on 4R-Tau isoform expression during development. As recently described, we observed a mitotic delay in 4R-Tau expressing cells of larval eye discs and brains. Live imaging revealed that the spindle undergoes a cycle of collapse and recovery before proceeding to anaphase. Furthermore, we found a high level of aneuploidy in post-mitotic differentiated tissue. Finally, we showed that overexpression of wild type and mutant 4R-Tau isoform in neuroblastoma SH-SY5Y cell lines is sufficient to induce monopolar spindles. Taken together, our results suggested that neurodegeneration could be in part linked to neuronal aneuploidy caused by 4R-Tau expression during brain development.


Assuntos
Aneuploidia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/genética , Humanos , Mitose/genética , Mutação , Células-Tronco Neurais/metabolismo , Fenótipo , Células Fotorreceptoras/metabolismo , Isoformas de Proteínas , Tauopatias/patologia
9.
EBioMedicine ; 9: 278-292, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27333034

RESUMO

Although several ADAMs (A disintegrin-like and metalloproteases) have been shown to contribute to the amyloid precursor protein (APP) metabolism, the full spectrum of metalloproteases involved in this metabolism remains to be established. Transcriptomic analyses centred on metalloprotease genes unraveled a 50% decrease in ADAM30 expression that inversely correlates with amyloid load in Alzheimer's disease brains. Accordingly, in vitro down- or up-regulation of ADAM30 expression triggered an increase/decrease in Aß peptides levels whereas expression of a biologically inactive ADAM30 (ADAM30(mut)) did not affect Aß secretion. Proteomics/cell-based experiments showed that ADAM30-dependent regulation of APP metabolism required both cathepsin D (CTSD) activation and APP sorting to lysosomes. Accordingly, in Alzheimer-like transgenic mice, neuronal ADAM30 over-expression lowered Aß42 secretion in neuron primary cultures, soluble Aß42 and amyloid plaque load levels in the brain and concomitantly enhanced CTSD activity and finally rescued long term potentiation alterations. Our data thus indicate that lowering ADAM30 expression may favor Aß production, thereby contributing to Alzheimer's disease development.


Assuntos
Proteínas ADAM/metabolismo , Peptídeos beta-Amiloides/metabolismo , Catepsina D/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Catepsina D/química , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Células HEK293 , Humanos , Lisossomos/metabolismo , Macrolídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Pepstatinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo
10.
Epilepsia ; 57(6): 994-1003, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27173016

RESUMO

OBJECTIVE: The discovery of mutations in DEPDC5 in familial focal epilepsies has introduced a novel pathomechanism to a field so far dominated by ion channelopathies. DEPDC5 is part of a complex named GAP activity toward RAGs (GATOR) complex 1 (GATOR1), together with the proteins NPRL2 and NPRL3, and acts to inhibit the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) pathway. GATOR1 is in turn inhibited by the GATOR2 complex. The mTORC1 pathway is a major signaling cascade regulating cell growth, proliferation, and migration. We aimed to study the contribution of GATOR complex genes to the etiology of focal epilepsies and to describe the associated phenotypical spectrum. METHODS: We performed targeted sequencing of the genes encoding the components of the GATOR1 (DEPDC5, NPRL2, and NPRL3) and GATOR2 (MIOS, SEC13, SEH1L, WDR24, and WDR59) complex in 93 European probands with focal epilepsy with or without focal cortical dysplasia. Phospho-S6 immunoreactivity was used as evidence of mTORC1 pathway activation in resected brain tissue of patients carrying pathogenic variants. RESULTS: We identified four pathogenic variants in DEPDC5, two in NPRL2, and one in NPRL3. We showed hyperactivation of the mTORC1 pathway in brain tissue from patients with NPRL2 and NPRL3 mutations. Collectively, inactivating mutations in GATOR1 complex genes explained 11% of cases of focal epilepsy, whereas no pathogenic mutations were found in GATOR2 complex genes. GATOR1-related focal epilepsies differ clinically from focal epilepsies due to mutations in ion channel genes by their association with focal cortical dysplasia and seizures emerging from variable foci, and might confer an increased risk of sudden unexplained death in epilepsy (SUDEP). SIGNIFICANCE: GATOR1 complex gene mutations leading to mTORC1 pathway upregulation is an important cause of focal epilepsy with cortical malformations and represents a potential target for novel therapeutic approaches.


Assuntos
Epilepsias Parciais/genética , Saúde da Família , Predisposição Genética para Doença/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Serina-Treonina Quinases TOR/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Análise Mutacional de DNA , Epilepsias Parciais/diagnóstico por imagem , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Adulto Jovem
11.
Acta Neuropathol Commun ; 3: 58, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26395440

RESUMO

INTRODUCTION: The application of high-throughput genomic approaches has revealed 24 novel risk loci for Alzheimer's disease (AD). We recently reported that the bridging integrator 1 (BIN1) risk gene is linked to Tau pathology. RESULTS: We used glutathione S-transferase pull-down assays and nuclear magnetic resonance (NMR) experiments to demonstrate that BIN1 and Tau proteins interact directly and then map the interaction between BIN1's SH3 domain and Tau's proline-rich domain (PRD) . Our NMR data showed that Tau phosphorylation at Thr231 weakens the SH3-PRD interaction. Using primary neurons, we found that BIN1-Tau complexes partly co-localize with the actin cytoskeleton; however, these complexes were not observed with Thr231-phosphorylated Tau species. CONCLUSION: Our results show that (i) BIN1 and Tau bind through an SH3-PRD interaction and (ii) the interaction is downregulated by phosphorylation of Tau Thr231 (and potentially other residues). Our study sheds new light on regulation of the BIN1/Tau interaction and opens up new avenues for exploring its complex's role in the pathogenesis of AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Prolina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Domínios de Homologia de src/fisiologia , Proteínas tau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação/fisiologia , Conformação Proteica , Ratos , Transfecção , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/genética , Proteínas tau/química , Proteínas tau/genética
12.
Hum Mol Genet ; 17(2): 313-22, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17956895

RESUMO

The charged multivesicular body protein 2B gene (CHMP2B) was recently associated with frontotemporal lobar degeneration (FTLD) linked to chromosome 3 in a Danish FTLD family (FTD-3). In this family, a mutation in the acceptor splice site of exon 6 produced two aberrant transcripts predicting two C-truncated CHMP2B proteins due to a read through of intron 5 (p.Met178ValfsX2) and a cryptic splicing event within exon 6 (p.Met178LeufsX30). Extensive mutation analysis of CHMP2B in Belgian patients (N = 146) identified one nonsense mutation in exon 5 (c.493C>T) in a familial FTLD patient, predicting a C-truncated protein p.Gln165X analogous to the Danish mutant proteins. Overexpression of Belgian p.Gln165X in human neuroblastoma SK-N-SH cells showed the formation of large, aberrant endosomal structures that were highly similar to those observed for Danish p.Met178ValfsX2. Together, these data suggest that C-truncating mutations in CHMP2B might underlie the pathogenic mechanism in FTLD by disturbing endosome function. We also describe a missense mutation in exon 5 of CHMP2B (p.Asn143Ser) in a familial patient with cortical basal degeneration. However, the pathogenic character of this mutation remains elusive.


Assuntos
Demência/genética , Proteínas do Tecido Nervoso/genética , Linhagem Celular Tumoral , Análise Mutacional de DNA , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Feminino , Humanos , Masculino , Mutagênese Sítio-Dirigida , Mutação , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Linhagem , Transfecção
13.
Nature ; 442(7105): 920-4, 2006 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-16862115

RESUMO

Frontotemporal dementia (FTD) with ubiquitin-immunoreactive neuronal inclusions (both cytoplasmic and nuclear) of unknown nature has been linked to a chromosome 17q21 region (FTDU-17) containing MAPT (microtubule-associated protein tau). FTDU-17 patients have consistently been shown to lack a tau-immunoreactive pathology, a feature characteristic of FTD with parkinsonism linked to mutations in MAPT (FTDP-17). Furthermore, in FTDU-17 patients, mutations in MAPT and genomic rearrangements in the MAPT region have been excluded by both genomic sequencing and fluorescence in situ hybridization on mechanically stretched chromosomes. Here we demonstrate that FTDU-17 is caused by mutations in the gene coding for progranulin (PGRN), a growth factor involved in multiple physiological and pathological processes including tumorigenesis. Besides the production of truncated PGRN proteins due to premature stop codons, we identified a mutation within the splice donor site of intron 0 (IVS0 + 5G > C), indicating loss of the mutant transcript by nuclear degradation. The finding was made within an extensively documented Belgian FTDU-17 founder family. Transcript and protein analyses confirmed the absence of the mutant allele and a reduction in the expression of PGRN. We also identified a mutation (c.3G > A) in the Met1 translation initiation codon, indicating loss of PGRN due to lack of translation of the mutant allele. Our data provide evidence that PGRN haploinsufficiency leads to neurodegeneration because of reduced PGRN-mediated neuronal survival. Furthermore, in a Belgian series of familial FTD patients, PGRN mutations were 3.5 times more frequent than mutations in MAPT, underscoring a principal involvement of PGRN in FTD pathogenesis.


Assuntos
Cromossomos Humanos Par 17/genética , Demência/genética , Lobo Frontal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Mutação/genética , Lobo Temporal/fisiopatologia , Ubiquitina/metabolismo , Bélgica , Análise Mutacional de DNA , Demência/fisiopatologia , Lobo Frontal/metabolismo , Ligação Genética/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mapeamento Físico do Cromossomo , Progranulinas , Sítios de Splice de RNA/genética , Lobo Temporal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA