Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 207(1): 116-22, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19423111

RESUMO

OBJECTIVE: The bulk of LDL entrapped in the arterial intima is modified by hydrolytic enzymes, leading to extensive cleavage of cholesterylesters and liberation of fatty acids. The latter induce apoptosis in endothelial cells but are far less cytotoxic towards macrophages. We have compared the cytotoxic effects of enzymatically modified LDL (E-LDL) on macrophages and polymorphonuclear granulocytes (PMN). METHODS AND RESULTS: E-LDL displayed toxicity towards PMN at far lower concentrations than towards monocyte-derived macrophages. Native or oxidized LDL had no effect. Free fatty acids contained in E-LDL were the cause of the observed toxicity, which could be mimicked by linoleic acid, oleic acid and arachidonic acid. E-LDL provoked Ca(2+) influx and activated PMN, as witnessed by the generation of superoxide anions and peroxidase secretion. Inhibition of either oxidative burst or calcium influx did not diminish the cytotoxicity of E-LDL. Similar to free linoleic acid, E-LDL lysed red blood cells and rapidly rendered cells permeable to propidium iodide. CONCLUSION: Possibly through their capacity to directly perturb cell membranes, free fatty acids contained in E-LDL exert potent cytotoxic effects on PMN. This may be one reason why PMN are not abundantly present in atherosclerotic lesions, and why PMN-depletion suppresses atherogenesis.


Assuntos
Aterosclerose/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Peptídeo Hidrolases/metabolismo , Esterol Esterase/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácido Araquidônico/metabolismo , Aterosclerose/patologia , Cálcio/metabolismo , Morte Celular , Permeabilidade da Membrana Celular , Sobrevivência Celular , Células Cultivadas , Hemólise , Humanos , Hidrólise , L-Lactato Desidrogenase/metabolismo , Ácido Linoleico/metabolismo , Macrófagos/patologia , Neutrófilos/patologia , Ácido Oleico/metabolismo , Peroxidase/metabolismo , Coelhos , Explosão Respiratória , Superóxidos/metabolismo , Fatores de Tempo
2.
Thromb Haemost ; 100(1): 110-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18612545

RESUMO

Following entrapment in the arterial intima, low-density lipoprotein (LDL) can be modified by hydrolytic enzymes to yield a lipoprotein derivative that binds C-reactive protein, activates complement, and is rapidly taken up by monocytes/macrophages. Free fatty acids contained in enzymatically modified LDL (E-LDL) render the lipoprotein cytotoxic due to their capacity to trigger programmed cell death. Apoprotein J (ApoJ) alias clusterin is a multifunctional glycoprotein with cytoprotective and anti-inflammatory properties. It interacts with diverse substrates, is present in the intima and the media of arteries with atherosclerotic lesions and is also synthesized by smooth muscle cells during development of atherosclerosis. We report that ApoJ binds to E-LDL but not to native LDL. Binding resulted in marked reduction of cytotoxicity of E-LDL on smooth muscle cells, as revealed by determination of caspase activity, annexin binding, and cellular ATP. ApoJ was detected immunohistochemically in early atherosclerotic lesions, where it was found to co-localize with E-LDL. In atherosclerotic lesions, ApoJ may thus subserve protective functions through its capacity to inactivate C5b-9 complement complexes and by reducing the cytotoxic effects of modified LDL on cells that gain contact with the lipoprotein.


Assuntos
Apoptose , Aterosclerose/metabolismo , Clusterina/metabolismo , Ácidos Graxos/metabolismo , Lipoproteínas LDL/metabolismo , Músculo Liso Vascular/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Anexinas/metabolismo , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Caspases/metabolismo , Linhagem Celular , Células Cultivadas , Clusterina/sangue , Ativação do Complemento , Citoproteção , Cães , Ativação Enzimática , Ácidos Graxos/toxicidade , Humanos , Hidrólise , Imuno-Histoquímica , Lipólise , Lipoproteínas LDL/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Ligação Proteica , Proteína C/metabolismo , Ratos , Fatores de Tempo
3.
Thromb Haemost ; 100(6): 1146-54, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19132242

RESUMO

There is evidence that low-density lipoprotein (LDL) is modified by hydrolytic enzymes, and that the product (E-LDL) induces selective production of interleukin 8 (IL-8) in endothelial cells. Since nuclear factor-kappaB (NF-kappaB) is a major regulator of IL-8 transcription, we studied its activation in endothelial cells treated with E-LDL. Unexpectedly, the modified lipoprotein not only failed to activate NF-kappaB, but completely blocked its activation by tumour necrosis factor-alpha (TNF-alpha) in EA.hy926-cells, as assessed by electrophoretic mobility shift assays and immunofluorescence. Inhibition occurred upstream of NF-kappaB translocation, as inhibitor of NF-kappaB- (IkappaB)-phosphorylation was suppressed by E-LDL. In contrast to NF-kappaB, transcription factor activator protein-1 (AP-1) proved to be activated. Removal of free fatty acids present in E-LDL obliterated both activation of AP-1 and inhibition of NF-kappaB. Chromatin immunoprecipitation revealed that phosphorylated c-jun, but not NF-kappaBp65 bound to the natural IL-8 promoter. Production of endothelial IL-8 and simultaneous modulation of NF-kappaB in response to hydrolyzed LDL might serve to protect the vessel wall and promote silent removal of the insudated lipoprotein.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ácidos Graxos não Esterificados/metabolismo , Humanos , Hidrólise , Proteínas I-kappa B/metabolismo , Imidazóis/farmacologia , Inflamação/enzimologia , Interleucina-8/genética , Interleucina-8/metabolismo , Inibidor de NF-kappaB alfa , Fosforilação , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Piridinas/farmacologia , Esterol Esterase/metabolismo , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Fator de Transcrição RelA/metabolismo , Tripsina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Cell Microbiol ; 8(10): 1591-600, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16984414

RESUMO

Staphylococcal alpha-toxin is an archetypal killer protein that homo-oligomerizes in target cells to create small transmembrane pores. The membrane-perforating beta-barrel motif is a conserved attack element of cytolysins of Gram-positive and Gram-negative bacteria. Following the recognition that nucleated cells can survive membrane permeabilization, a profile of abundant transcripts was obtained in transiently perforated keratinocytes. Several immediate early genes were found to be upregulated, reminiscent of the cellular response to growth factors. Cell cycle analyses revealed doubling of S + G2/M phase cells 26 h post toxin treatment. Determination of cell counts uncovered that after an initial drop, numbers increased to exceed the controls after 2 days. A non-lytic alpha-toxin mutant remained without effect. The alpha-toxin pore is too small to allow egress of cytosolic growth factors, and evidence was instead obtained for growth signalling via the epidermal growth factor receptor (EGFR). Inhibition of the EGFR or of EGFR-proligand-processing blocked the mitogenic effect of alpha-toxin. Western blots with phospho-specific antibodies revealed activation of the EGFR, and of the adapter protein Shc. Immediate early response and proliferation upon transient plasma membrane pore formation by bacterial toxins may represent a novel facet of the complex interaction between pathogen and host.


Assuntos
Toxinas Bacterianas , Receptores ErbB/metabolismo , Proteínas Hemolisinas , Queratinócitos/metabolismo , Staphylococcus aureus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Western Blotting , Ciclo Celular , Linhagem Celular , Linhagem Celular Transformada , Proliferação de Células , Citotoxinas/metabolismo , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Queratinócitos/citologia , Queratinócitos/microbiologia , Mitógenos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Adaptadoras da Sinalização Shc , Transdução de Sinais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Transfecção
5.
Biochem Biophys Res Commun ; 344(4): 1128-34, 2006 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-16643845

RESUMO

Following the observation that cells are able to recover from membrane lesions incurred by Staphylococcus aureus alpha-toxin and streptolysin O (SLO), we investigated the role of p38 in this process. p38 phosphorylation occurred in response to attack by both toxins, commencing within minutes after toxin treatment and waning after several hours. While SLO reportedly activates p38 via ASK1 and ROS, we show that this pathway does not play a major role for p38 induction in alpha-toxin-treated cells. Strikingly divergent effects of p38 blockade were noted depending on the toxin employed. In the case of alpha-toxin, inhibition of p38 within the time frame of its activation led to disruption of the recovery process and to cell death. In contrast, blockade of p38 in SLO permeabilized cells did not affect the capacity of the cells to replenish their ATP stores.


Assuntos
Toxinas Bacterianas/farmacologia , Membrana Celular/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Staphylococcus aureus , Estreptolisinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/farmacologia , Permeabilidade da Membrana Celular , Células Cultivadas , Ativação Enzimática , Proteínas Hemolisinas , Humanos , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/metabolismo , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA