Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 727952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566985

RESUMO

The human intestine contains numerous mononuclear phagocytes (MNP), including subsets of conventional dendritic cells (cDC), macrophages (Mf) and monocytes, each playing their own unique role within the intestinal immune system and homeostasis. The ability to isolate and interrogate MNPs from fresh human tissue is crucial if we are to understand the role of these cells in homeostasis, disease settings and immunotherapies. However, liberating these cells from tissue is problematic as many of the key surface identification markers they express are susceptible to enzymatic cleavage and they are highly susceptible to cell death. In addition, the extraction process triggers immunological activation/maturation which alters their functional phenotype. Identifying the evolving, complex and highly heterogenous repertoire of MNPs by flow cytometry therefore requires careful selection of digestive enzyme blends that liberate viable cells and preserve recognition epitopes involving careful selection of antibody clones to enable analysis and sorting for functional assays. Here we describe a method for the anatomical separation of mucosa and submucosa as well as isolating lymphoid follicles from human jejunum, ileum and colon. We also describe in detail the optimised enzyme digestion methods needed to acquire functionally immature and biologically functional intestinal MNPs. A comprehensive list of screened antibody clones is also presented which allows for the development of high parameter flow cytometry panels to discriminate all currently identified human tissue MNP subsets including pDCs, cDC1, cDC2 (langerin+ and langerin-), newly described DC3, monocytes, Mf1, Mf2, Mf3 and Mf4. We also present a novel method to account for autofluorescent signal from tissue macrophages. Finally, we demonstrate that these methods can successfully be used to sort functional, immature intestinal DCs that can be used for functional assays such as cytokine production assays.


Assuntos
Separação Celular , Colo/citologia , Citometria de Fluxo , Íleo/citologia , Mucosa Intestinal/citologia , Jejuno/citologia , Fagócitos/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fagócitos/imunologia , Fenótipo
2.
STAR Protoc ; 2(3): 100722, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34458865

RESUMO

Intravital multiphoton imaging of the tumor milieu allows for the dissection of intricate and dynamic biological processes in situ. Herein, we present a step-by-step protocol for setting up an experimental cancer imaging model that has been optimized for solid tumors such as breast cancer and melanoma implanted in the flanks of mice. This protocol can be utilized for dissecting tumor-immune cell dynamics in vivo or other tumor-specific biological questions. For complete details on the use of this protocol for intravital imaging of breast cancer, please refer to Tikoo et al. (2021a), and for intravital imaging of melanoma, please refer to Tikoo et al. (2021b).


Assuntos
Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Microambiente Tumoral/fisiologia , Animais , Neoplasias da Mama/diagnóstico por imagem , Feminino , Melanoma/diagnóstico por imagem , Camundongos
3.
Wound Repair Regen ; 29(6): 996-1005, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34272902

RESUMO

Hypertrophic scars (HTS) remain a common outcome of burn injury, particularly in children. They can arise from variations in the wound healing stages, such as an excessive inflammatory response or inefficient remodelling. Of the cells contributing to these healing stages, macrophages and fibrocytes are crucial. Specifically, the inflammatory phase is dominated by M1 macrophages, the proliferation/remodelling stages by M2 macrophages, and scar tissue contains numerous fibrocytes. As the progenitors to these cells, monocytes, can also exhibit M1- and M2-skewing, we proposed that their profile, or circulating fibrocyte counts, could be used to predict poor healing outcomes. To investigate this, we obtained blood samples from paediatric controls and burns patients, which were then divided into HTS and NoHTS groups upon scar assessment at 12 months. The samples were assessed by whole blood flow cytometry to quantify fibrocytes and monocyte subset proportions and to determine monocyte levels of M1 (CD86, CD120b, CD319) and M2 (CD93, CD163, CD200R) markers. Both burns groups had higher proportions of classical monocytes compared to controls, indicating increased cell turnover and/or entry of other subsets into the wound. In burns patients who took more than 21 days to heal, the HTS group had lower M2 (CD200R) expression with the ratio of M1/M2 (CD86/CD200R) being significantly higher. These results suggest an elevated early inflammatory monocyte response contributes to development of HTS. Correlations of marker expression with remaining healing time revealed a significant positive correlation with M1 (CD120b) and M1/M2 (CD120b/CD200R), suggesting a potential role for CD120b as an indicator of healing delay. Fibrocytes did not significantly differ between the groups. In conclusion, increased monocyte inflammation likely contributes to slower healing and development of scarring, but further studies are needed to determine the predictive power of monocyte inflammatory profile.


Assuntos
Queimaduras , Cicatriz Hipertrófica , Criança , Cicatriz Hipertrófica/patologia , Humanos , Macrófagos/patologia , Monócitos , Cicatrização
4.
Cell Syst ; 12(5): 432-445.e7, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33957084

RESUMO

Findings about chronic complex diseases are difficult to extrapolate from animal models to humans. We reason that organs may have core network modules that are preserved between species and are predictably altered when homeostasis is disrupted. To test this idea, we perturbed hepatic homeostasis in mice by dietary challenge and compared the liver transcriptome with that in human fatty liver disease and liver cancer. Co-expression module preservation analysis pointed to alterations in immune responses and metabolism (core modules) in both human and mouse datasets. The extent of derailment in core modules was predictive of survival in the cancer genome atlas (TCGA) liver cancer dataset. We identified module eigengene quantitative trait loci (module-eQTL) for these predictive co-expression modules, targeting of which may resolve homeostatic perturbations and improve patient outcomes. The framework presented can be used to understand homeostasis at systems levels in pre-clinical models and in humans. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Redes Reguladoras de Genes , Neoplasias Hepáticas , Animais , Redes Reguladoras de Genes/genética , Homeostase , Neoplasias Hepáticas/genética , Camundongos , Locos de Características Quantitativas/genética
5.
PLoS Pathog ; 17(4): e1009522, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872331

RESUMO

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner. In myeloid cells, HIV infection was decreased via antiviral effects, cell maturation and downregulation of CCR5 expression. In contrast, in resting memory CD4 T cells, pDCs induced a subset-specific increase in intracellular HIV p24 protein expression without any activation or increase in CCR5 expression, as measured by flow cytometry. This increase was due to reactivation rather than enhanced viral spread, as blocking HIV entry via CCR5 did not alter the increased intracellular p24 expression. Furthermore, the load and proportion of cells expressing HIV DNA were restricted in the presence of pDCs while reverse transcriptase and p24 ELISA assays showed no increase in particle associated reverse transcriptase or extracellular p24 production. In addition, pDCs also markedly induced the expression of CD69 on infected CD4 T cells and other markers of CD4 T cell tissue retention. These phenotypic changes showed marked parallels with resident memory CD4 T cells isolated from anogenital tissue using enzymatic digestion. Production of IFNα by pDCs was the main driving factor for all these results. Thus, pDCs may reduce HIV spread during initial mucosal acquisition by inhibiting replication in myeloid cells while reactivating latent virus in resting memory CD4 T cells and retaining them for immune clearance.


Assuntos
Células Dendríticas/virologia , Infecções por HIV/virologia , HIV/imunologia , Interferon-alfa/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/imunologia , Citometria de Fluxo , HIV/genética , HIV/fisiologia , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/imunologia , Humanos , Células Mieloides/imunologia , Células Mieloides/virologia , Fenótipo
6.
Sci Rep ; 10(1): 6930, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332767

RESUMO

Normothermic machine perfusion (NMP) is an emerging modality for kidney preservation prior to transplantation. NMP may allow directed pharmacomodulation of renal ischemia-reperfusion injury (IRI) without the need for systemic donor/recipient therapies. Three proven anti-IRI agents not in widespread clinical use, CD47-blocking antibody (αCD47Ab), soluble complement receptor 1 (sCR1), and recombinant thrombomodulin (rTM), were compared in a murine model of kidney IRI. The most effective agent was then utilized in a custom NMP circuit for the treatment of isolated porcine kidneys, ascertaining the impact of the drug on perfusion and IRI-related parameters. αCD47Ab conferred the greatest protection against IRI in mice after 24 hours. αCD47Ab was therefore chosen as the candidate agent for addition to the NMP circuit. CD47 receptor binding was demonstrated by immunofluorescence. Renal perfusion/flow improved with CD47 blockade, with a corresponding reduction in oxidative stress and histologic damage compared to untreated NMP kidneys. Tubular and glomerular functional parameters were not significantly impacted by αCD47Ab treatment during NMP. In a murine renal IRI model, αCD47Ab was confirmed as a superior anti-IRI agent compared to therapies targeting other pathways. NMP enabled effective, direct delivery of this drug to porcine kidneys, although further efficacy needs to be proven in the transplantation setting.


Assuntos
Anticorpos/farmacologia , Rim/patologia , Perfusão , Traumatismo por Reperfusão/patologia , Temperatura , Animais , Nitrogênio da Ureia Sanguínea , Antígeno CD47/imunologia , Quimiocinas/genética , Quimiocinas/metabolismo , Complemento C3/metabolismo , Complemento C9/metabolismo , Creatinina/sangue , Sistemas de Liberação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Receptor Celular 1 do Vírus da Hepatite A/genética , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Peróxido de Hidrogênio/metabolismo , Mediadores da Inflamação/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Complemento/metabolismo , Traumatismo por Reperfusão/sangue , Suínos
7.
Rheumatology (Oxford) ; 58(10): 1850-1860, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649471

RESUMO

OBJECTIVES: To investigate whether activated protein C (APC), a physiological anticoagulant can inhibit the inflammatory/invasive properties of immune cells and rheumatoid arthritis synovial fibroblasts (RASFs) in vitro and prevent inflammatory arthritis in murine antigen-induced arthritis (AIA) and CIA models. METHODS: RASFs isolated from synovial tissues of patients with RA, human peripheral blood mononuclear cells (PBMCs) and mouse thymus cells were treated with APC or TNF-α/IL-17 and the following assays were performed: RASF proliferation and invasion by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell invasion assays, respectively; cytokines and signalling molecules using ELISA or western blot; Th1 and Th17 phenotypes in human PBMCs or mouse thymus cells by flow cytometry. The in vivo effect of APC was evaluated in AIA and CIA models. RESULTS: In vitro, APC inhibited IL-1ß, IL-17 and TNF-α production, IL-17-stimulated cell proliferation and invasion and p21 and nuclear factor κB activation in RASFs. In mouse thymus cells and human PBMCs, APC suppressed Th1 and Th17 phenotypes. In vivo, APC inhibited pannus formation, cartilage destruction and arthritis incidence/severity in both CIA and AIA models. In CIA, serum levels of IL-1ß, IL-6, IL-17, TNF-α and soluble endothelial protein C receptor were significantly reduced by APC treatment. Blocking endothelial protein C receptor, the specific receptor for APC, abolished the early or preventative effect of APC in AIA. CONCLUSION: APC prevents the onset and development of arthritis in CIA and AIA models via suppressing inflammation, Th1/Th17 phenotypes and RASF invasion, which is likely mediated via endothelial protein C receptor.


Assuntos
Artrite Reumatoide/prevenção & controle , Fibroblastos/efeitos dos fármacos , Proteína C/farmacologia , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamação , Interleucina-17/farmacologia , Leucócitos Mononucleares , Camundongos , Fenótipo , Membrana Sinovial/citologia , Timo/citologia , Fator de Necrose Tumoral alfa/farmacologia
8.
Arthritis Rheum ; 64(1): 88-98, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21905006

RESUMO

OBJECTIVE: To investigate whether protease-activated receptor 1 (PAR-1) and/or PAR-2 promotes the invasiveness/proliferation of synovial fibroblasts (SFs) and to determine the signaling mechanisms of these pathways. METHODS: SFs were isolated from the synovial tissue of patients with rheumatoid arthritis (RA), patients with osteoarthritis (OA), and PAR-1- or PAR-2-knockout (KO) mice. Expression of PAR-1 and PAR-2 was detected by immunofluorescence and Western blotting. The invasion and proliferation of SFs were measured by invasion assay and MTT assay, respectively. Matrix metalloproteinase 2 (MMP-2) and MMP-9 were detected by zymography, and cytokines were measured by enzyme-linked immunosorbent assay. RESULTS: PAR-1 and PAR-2 were colocalized with SFs in RA and OA synovium and, to a considerably lesser extent, in normal synovium. Inhibition of PAR-2 by small interfering RNA (siRNA) inhibited RASF invasion and proliferation, whereas blocking of PAR-1 by siRNA had the reverse effects. SFs from PAR-2-KO mice exhibited slower rates of proliferation and invasion. SFs from PAR-1-KO mice produced less MMP-2 and, in response to tumor necrosis factor α (TNFα) stimulation, had increased MMP-9 secretion when compared to SFs from wild-type and PAR-2-KO mice. Inhibition of PAR-1, but not PAR-2, stimulated the secretion of interleukin-17 (IL-17) and TNFα by RASFs. Furthermore, PAR-1 and PAR-2 had opposing effects on the activation of ERK, p38, and NF-κB. CONCLUSION: Activation of PAR-1 stimulates MMP-2 secretion, inhibits RASF growth and invasion, and decreases production of IL-17 and TNFα by RASFs, whereas activation of PAR-2 stimulates RASF growth and invasion and increases production of TNFα. Thus, although PAR-1 and PAR-2 are coexpressed by RASFs, PAR-2 alone appears to be responsible for the aggressive properties of RASFs and is likely to contribute to the pathologic progression of RA.


Assuntos
Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Receptor PAR-1/metabolismo , Receptor PAR-2/metabolismo , Membrana Sinovial/metabolismo , Idoso , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Formazans/metabolismo , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Receptor PAR-1/deficiência , Receptor PAR-1/genética , Receptor PAR-2/deficiência , Receptor PAR-2/genética , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia , Sais de Tetrazólio/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
J Biol Chem ; 286(8): 6742-50, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21173154

RESUMO

Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability.


Assuntos
Comunicação Celular/fisiologia , Receptores ErbB/metabolismo , Queratinócitos/metabolismo , Proteína C/metabolismo , Receptor TIE-2/metabolismo , Comunicação Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Recém-Nascido , Junções Intercelulares/metabolismo , Queratinócitos/citologia , Masculino , Peptídeos/farmacologia , Permeabilidade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt , RNA Interferente Pequeno , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA