Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Res Arch ; 11(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37484871

RESUMO

Objective: Coronary heart disease is a leading cause of death and disability. Although psychological stress has been identified as an important potential contributor, mechanisms by which stress increases risk of heart disease and mortality are not fully understood. The purpose of this study was to assess mechanisms by which stress acts through the brain and heart to confer increased CHD risk. Methods: Coronary Heart Disease patients (N=10) underwent cardiac imaging with [Tc-99m] sestamibi single photon emission tomography at rest and during a public speaking mental stress task. Patients returned for a second day and underwent positron emission tomography imaging of the brain, heart, bone marrow, aorta (indicating inflammation) and subcutaneous adipose tissue, after injection of [18F]2-fluoro-2-deoxyglucose for assessment of glucose uptake followed mental stress. Patients with (N=4) and without (N=6) mental stress-induced myocardial ischemia were compared for glucose uptake in brain, heart, adipose tissue and aorta with mental stress. Results: Patients with mental stress-induced ischemia showed a pattern of increased uptake in the heart, medial prefrontal cortex, and adipose tissue with stress. In the heart disease group as a whole, activity increase with stress in the medial prefrontal brain and amygdala correlated with stress-induced increases in spleen (r=0.69, p=0.038; and r=0.69, p=0.04 respectfully). Stress-induced frontal lobe increased uptake correlated with stress-induced aorta uptake (r=0.71, p=0.016). Activity in insula and medial prefrontal cortex was correlated with post-stress activity in bone marrow and adipose tissue. Activity in other brain areas not implicated in stress did not show similar correlations. Increases in medial prefrontal activity with stress correlated with increased cardiac glucose uptake with stress, suggestive of myocardial ischemia (r=0.85, p=0.004). Conclusions: These findings suggest a link between brain response to stress in key areas mediating emotion and peripheral organs involved in inflammation and hematopoietic activity, as well as myocardial ischemia, in Coronary Heart Disease patients.

2.
Int J Cardiol ; 373: 7-16, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36460208

RESUMO

BACKGROUND: Low quantities of circulating progenitor cells (CPCs), specifically CD34+ populations, reflect impairment of intrinsic regenerative capacity. This study investigates the relationship between subsets of CPCs and adverse outcomes. METHODS: 1366 individuals undergoing angiography for evaluation of coronary artery disease (CAD) were enrolled into the Emory Cardiovascular Biobank. Flow cytometry identified CPCs as CD45med blood mononuclear cells expressing the CD34 epitope, with further enumeration of hematopoietic CPCs as CD133+/CXCR4+ cells and endothelial CPCs as vascular endothelial growth factor receptor-2 (VEGFR2+) cells. Adjusted Cox or Fine and Gray's sub-distribution hazard regression models analyzed the relationship between CPCs and 1) all-cause death and 2) a composite of cardiovascular death and non-fatal myocardial infarction (MI). RESULTS: Over a median 3.1-year follow-up period (IQR 1.3-4.9), there were 221 (16.6%) all-cause deaths and 172 (12.9%) cardiovascular deaths/MIs. Hematopoietic CPCs were highly correlated, and the CD34+/CXCR4+ subset was the best independent predictor. Lower counts (≤median) of CD34+/CXCR4+ and CD34+/VEGFR2+ cells independently predicted all-cause mortality (HR 1.46 [95% CI 1.06-2.01], p = 0.02 and 1.59 [95% CI 1.15-2.18], p = 0.004) and cardiovascular death/MI (HR 1.50 [95% CI 1.04-2.17], p = 0.03 and 1.47 [95% CI 1.01-2.03], p = 0.04). A combination of low CD34+/CXCR4+ and CD34+/VEGFR2+ CPCs predicted all-cause death (HR 2.1, 95% CI 1.4-3.0; p = 0.0002) and cardiovascular death/MI (HR 2.0, 95% CI 1.3-3.2; p = 0.002) compared to those with both lineages above the cut-offs. CONCLUSIONS: Lower levels of hematopoietic and endothelial CPCs indicate diminished endogenous regenerative capacity and independently correlate with greater mortality and cardiovascular risk in patients with CAD.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco , Coração , Antígenos CD34/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA