Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 291: 110368, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928675

RESUMO

Ethanol is known to accumulate in various plant organs under various environmental conditions. However, there are very scarce data about ethanol sensing by plants. We observed that ethanol accumulates up to 3.5 mM during tomato seed imbibition, particularly when seeds were stacked. Stacked seeds germinated less than spread out seeds suggesting ethanol inhibits germination. In support of this, exogenous ethanol at physiological concentrations, ranging from 1 to 10 mM, inhibited germination of wild type tomato seeds. However, the germination pattern over the whole ethanol concentration range tested was modified in an ethylene insensitive mutant, never-ripe (nr). The effects of exogenous ethanol were not linked to differences in ethylene production by imbibed seeds. But, we observed that exogenous ethanol at a concentration as low as 0.01 mM down regulated the expression of some ethylene receptors. Moreover, the triple response induced by ethylene in tomato seedlings was partially alleviated by 1 mM ethanol. Similar observations were made on Arabidopsis seeds. These results show there are interactions between ethylene sensing and ethanol in plants.


Assuntos
Etanol/administração & dosagem , Etilenos/metabolismo , Germinação/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/metabolismo
2.
Plant Physiol ; 176(2): 1764-1772, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187569

RESUMO

Establishment of symbiotic nitrogen-fixation in legumes is regulated by the plant hormone ethylene, but it has remained unclear whether and how its biosynthesis is regulated by the symbiotic pathway. We established a sensitive ethylene detection system for Lotus japonicus and found that ethylene production increased as early as 6 hours after inoculation with Mesorhizobium loti This ethylene response was dependent on Nod factor production by compatible rhizobia. Analyses of nodulation mutants showed that perception of Nod factor was required for ethylene emission, while downstream transcription factors including CYCLOPS, NIN, and ERN1 were not required for this response. Activation of the nodulation signaling pathway in spontaneously nodulating mutants was also sufficient to elevate ethylene production. Ethylene signaling is controlled by EIN2, which is duplicated in L. japonicus We obtained a L. japonicus Ljein2a Ljein2b double mutant that exhibits complete ethylene insensitivity and confirms that these two genes act redundantly in ethylene signaling. Consistent with this redundancy, both LjEin2a and LjEin2b are required for negative regulation of nodulation and Ljein2a Ljein2b double mutants are hypernodulating and hyperinfected. We also identified an unexpected role for ethylene in the onset of nitrogen fixation, with the Ljein2a Ljein2b double mutant showing severely reduced nitrogen fixation. These results demonstrate that ethylene production is an early and sustained nodulation response that acts at multiple stages to regulate infection, nodule organogenesis, and nitrogen fixation in L. japonicus.


Assuntos
Etilenos/análise , Lotus/fisiologia , Mesorhizobium/fisiologia , Fixação de Nitrogênio , Reguladores de Crescimento de Plantas/análise , Transdução de Sinais , Etilenos/metabolismo , Lotus/microbiologia , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Plântula/microbiologia , Plântula/fisiologia , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Sci ; 190: 74-81, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22608521

RESUMO

In Arabidopsis roots, some epidermal cells differentiate into root hair cells. Auxin regulates root hair positioning, while ethylene controls cell elongation. Phyllobacterium brassicacearum STM196, a beneficial strain of plant growth promoting rhizobacteria (PGPR) isolated from the roots of field-grown oilseed rape, stimulates root hair elongation in Arabidopsis thaliana seedlings. We investigated the role of ethylene in the response of root hair cells to STM196 inoculation. While we could not detect a significant increase in ethylene biosynthesis, we could detect a slight activation of the ethylene signalling pathway. Consistent with this, an exhaustive survey of the root hair elongation response of mutants and transgenic lines affected in the ethylene pathway showed contrasting root hair sensitivities to STM196. We propose that local ethylene emission contributes to STM196-induceed root hair elongation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Etilenos/metabolismo , Phyllobacteriaceae/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Ácidos Indolacéticos/metabolismo , Mutação/genética , Phyllobacteriaceae/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Estabilidade Proteica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Plant Physiol ; 137(4): 1302-18, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15749991

RESUMO

Symbiotic nitrogen fixation (SNF) in legume root nodules requires differentiation and integration of both plant and bacterial metabolism. Classical approaches of biochemistry, molecular biology, and genetics have revealed many aspects of primary metabolism in legume nodules that underpin SNF. Functional genomics approaches, especially transcriptomics and proteomics, are beginning to provide a more holistic picture of the metabolic potential of nodules in model legumes like Medicago truncatula and Lotus japonicus. To extend these approaches, we have established protocols for nonbiased measurement and analysis of hundreds of metabolites from L. japonicus, using gas chromatography coupled with mass spectrometry. Following creation of mass spectral tag libraries, which represent both known and unknown metabolites, we measured and compared relative metabolite levels in nodules, roots, leaves, and flowers of symbiotic plants. Principal component analysis of the data revealed distinct metabolic phenotypes for the different organs and led to the identification of marker metabolites for each. Metabolites that were enriched in nodules included: octadecanoic acid, asparagine, glutamate, homoserine, cysteine, putrescine, mannitol, threonic acid, gluconic acid, glyceric acid-3-P, and glycerol-3-P. Hierarchical cluster analysis enabled discrimination of 10 groups of metabolites, based on distribution patterns in diverse Lotus organs. The resources and tools described here, together with ongoing efforts in the areas of genome sequencing, and transcriptome and proteome analysis of L. japonicus and Mesorhizobium loti, should lead to a better understanding of nodule metabolism that underpins SNF.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Lotus/metabolismo , Lotus/microbiologia , Fixação de Nitrogênio , Fenótipo , Estruturas Vegetais/metabolismo , Análise de Componente Principal , Simbiose
5.
Curr Biol ; 15(6): 531-5, 2005 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15797021

RESUMO

Hemoglobins are ubiquitous in nature and among the best-characterized proteins. Genetics has revealed crucial roles for human hemoglobins, but similar data are lacking for plants. Plants contain symbiotic and nonsymbiotic hemoglobins; the former are thought to be important for symbiotic nitrogen fixation (SNF). In legumes, SNF occurs in specialized organs, called nodules, which contain millions of nitrogen-fixing rhizobia, called bacteroids. The induction of nodule-specific plant genes, including those encoding symbiotic leghemoglobins (Lb), accompanies nodule development. Leghemoglobins accumulate to millimolar concentrations in the cytoplasm of infected plant cells prior to nitrogen fixation and are thought to buffer free oxygen in the nanomolar range, avoiding inactivation of oxygen-labile nitrogenase while maintaining high oxygen flux for respiration. Although widely accepted, this hypothesis has never been tested in planta. Using RNAi, we abolished symbiotic leghemoglobin synthesis in nodules of the model legume Lotus japonicus. This caused an increase in nodule free oxygen, a decrease in the ATP/ADP ratio, loss of bacterial nitrogenase protein, and absence of SNF. However, LbRNAi plants grew normally when fertilized with mineral nitrogen. These data indicate roles for leghemoglobins in oxygen transport and buffering and prove for the first time that plant hemoglobins are crucial for symbiotic nitrogen fixation.


Assuntos
Leghemoglobina/metabolismo , Lotus/fisiologia , Nitrogênio/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Rhizobiaceae/fisiologia , Simbiose , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Transporte Biológico/fisiologia , Primers do DNA , Immunoblotting , Leghemoglobina/genética , Lotus/genética , Lotus/metabolismo , Dados de Sequência Molecular , Nitrogenase/metabolismo , Oxigênio/metabolismo , Raízes de Plantas/citologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobiaceae/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA